Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.advisorElliott, Richard Michael
dc.contributor.authorSzemiel, Agnieszka M.
dc.date.accessioned2012-04-24T15:41:40Z
dc.date.available2012-04-24T15:41:40Z
dc.date.issued2011
dc.identifier.urihttp://hdl.handle.net/10023/2570
dc.description.abstractThe Bunyaviridae family is one of the largest among RNA viruses, comprising more than 350 serologically distinct viruses. The family is classified into five genera, Orthobunyavirus, Hantavirus, Nairovirus, Phlebovirus, and Tospovirus. Orthobunyaviruses, nairoviruses and phleboviruses are maintained in nature by a propagative cycle involving blood-feeding arthropods and susceptible vertebrate hosts. Like most arthropod-borne viruses, bunyavirus replication causes little damage to the vector, whereas infection of the mammalian host may lead to death. This situation is mimicked in the laboratory: in cultured mosquito cells no cytopathology is observed and a persistent infection is established, whereas in cultured mammalian cells orthobunyavirus infection is lytic and leads to cell death. Bunyaviruses encode four common structural proteins: an RNA-dependent RNA polymerase, two glycoproteins (Gc and Gn), and a nucleoprotein N. Some viruses also code for nonstructural proteins called NSm and NSs. The NSs protein of the prototype bunyavirus, Bunyamwera virus, seems to be one of the factors responsible for the different outcomes of infection in mammalian and mosquito cell lines. However, only limited information is available on the growth of bunyaviruses in cultured mosquito cell lines other than Aedes albopictus C6/36 cells. Here, I compared the replication of Bunyamwera virus in two additional Aedes albopictus cell clones, C7-10 and U4.4, and two Aedes aegypti cell clones, Ae and A20, and investigated the impact of virus replication on cell function. In addition, whereas the vertebrate innate immune response to arbovirus infection is well studied, relatively little is known about mosquitoes’ reaction to these infections. I investigated the immune responses of the different mosquito cells to Bunyamwera virus infection, in particular antimicrobial signaling pathways (Toll and IMD) and RNA interference (RNAi). The data obtained in U4.4 cells suggest that NSs plays an important role in the infection of mosquitoes. Moreover infection of U4.4 cells more closely resembles infection in Ae and A20 cells and live Aedes aegypti mosquitoes. My data showed that the investigated cell lines have various properties, and therefore they can be used to study different aspects of mosquito-virus interactions.
dc.language.isoenen_US
dc.publisherUniversity of St Andrews
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/
dc.subject.lccQR398.7S8
dc.subject.lcshBunyavirusesen_US
dc.subject.lcshMosquitoes--Cytologyen_US
dc.subject.lcshVirology--Cultures and culture mediaen_US
dc.titleReplication of Bunyamwera virus in mosquito cellsen_US
dc.typeThesisen_US
dc.contributor.sponsorUniversity of St Andrewsen_US
dc.type.qualificationlevelDoctoralen_US
dc.type.qualificationnamePhD Doctor of Philosophyen_US
dc.publisher.institutionThe University of St Andrewsen_US


The following license files are associated with this item:

  • Creative Commons

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
Except where otherwise noted within the work, this item's license for re-use is described as Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported