St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Earth & Environmental Sciences and Geography & Sustainable Development (Schools of)
  • School of Earth & Environmental Sciences
  • Earth & Environmental Sciences Theses
  • View Item
  •   St Andrews Research Repository
  • Earth & Environmental Sciences and Geography & Sustainable Development (Schools of)
  • School of Earth & Environmental Sciences
  • Earth & Environmental Sciences Theses
  • View Item
  •   St Andrews Research Repository
  • Earth & Environmental Sciences and Geography & Sustainable Development (Schools of)
  • School of Earth & Environmental Sciences
  • Earth & Environmental Sciences Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

REE induced defects in minerals : a spectroscopic study

Date
29/07/2020
Author
Horsburgh, Nicola Jane
Supervisor
Finch, Adrian Anthony
Funder
SoS RARE (Project)
Natural Environment Research Council (NERC)
University of St Andrews. 7th century Scholarship
Grant ID
NE/M010856/1
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
This thesis examines the luminescence and mineral physics of Rare Earth Element (REE) bearing minerals as a precursor to developing smart sorting tools for critical metals used in low-carbon technologies. I characterise luminescence responses of complex zirconosilicates; eudialyte (Na₁₅Ca₆(Fe²⁺,Mn²⁺)₃Zr₃[Si₂₅O₇₃](O,OH,H₂O)₃(OH,Cl)₂), wöhlerite (NaCa₂(Zr,Nb)(Si₂O₇)(O,OH,F)₂) and catapleiite (Na₂Zr(Si₃O₉) · 2H2₂O). Fluorite was included as it is commonly associated with REE ores and displays strong REE luminescence. Its behaviour provides key insights into REE substitution into ionic minerals. X-ray Excited Optical Luminescence (XEOL) and Thermoluminescence (TL) measurements were taken from 20 to 673 K. Fluorite responses result from a balance of intrinsic luminescence and REE substituents and evidence for REE and defect coupling. TL indicates the presence of electron traps and the coupling of these traps to lanthanide emissions, and it shows that the defect and the lanthanide are clustered in physical space. The absence of changes in TL for different lanthanides shows that energy is passed efficiently between rare earths, indicating that the REE are clustered. The zirconosilicates all show increased intensity in XEOL response below 150 K. Cryogenic emissions are interpreted as originating from the host mineral. There are 3 shared features: UV (~280 nm) paramagnetic oxygen or oxygen vacancy; blue (440 nm) Al-O⁻-Al /Ti centres; and REE. Wöhlerite and eudialyte show Fe³⁺ band (~708 nm) and wöhlerite displays broad emission attributed to Mn²⁺. Eudialyte shows two additional responses; UV (~320 nm) tentatively assigned to Na migration and UV/blue (~400 nm) potentially associated with charge balances associated with the coupled substitution of Al³⁺. Eudialyte shows little emission at room temperature, this is attributed to quenching from Fe²⁺. Emission from eudialyte above room temperature is attributed to alteration minerals such as catapleiite and potentially to inclusions of luminescent primary mineral phases. I demonstrate that smart sorting could be a valuable beneficiation tool for REE minerals.
DOI
https://doi.org/10.17630/sta/140
Type
Thesis, PhD Doctor of Philosophy
Rights
Embargo Date: 2022-06-24
Embargo Reason: Thesis restricted in accordance with University regulations. Print and electronic copy restricted until 24th June 2022
Collections
  • Earth & Environmental Sciences Theses
Description of related resources
REE induced defects in minerals; a spectroscopic study (thesis data) Horsburgh, N.J., University of St Andrews. DOI: https://doi.org/10.17630/a47f2c46-aed2-417a-acb1-d9e2f39ee92a
Related resources
https://doi.org/10.17630/a47f2c46-aed2-417a-acb1-d9e2f39ee92a
URI
http://hdl.handle.net/10023/24050

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter