St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Generation and characterisation of ultrashort diode laser pulses

Thumbnail
View/Open
DavidBirkinPhDthesis2001_original_C.pdf (32.42Mb)
Date
2001
Author
Birkin, David J. L.
Supervisor
Sibbett, Wilson
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
This thesis is concerned with the development of a compact diode laser source of picosecond optical pulses having enhanced average powers. This is realised by the application of a large amplitude sinusoidal modulation to a single-contact, single-mode, narrow stripe, InGaAs/GaAs ridge-waveguide diode laser. The operational characteristics of the device when in continuous wave and gainswitched regimes are presented. In the gain-switched regime, a minimum pulse duration of 30ps is demonstrated, at average and peak powers up to ≈150mW and ≈1.8W respectively. A sonogram technique is employed to determine the sign and magnitude of the frequency chirp in the optical pulses. On the basis of this information aperiodic gratings are designed and fabricated in germanosilicate optical fibres and lithium niobate crystals to realise temporal pulse compression and efficient second harmonic generation respectively. The effect of self-injection optical feedback is described, along with the corresponding realisation in the reduction in the spectral bandwidth of the optical pulses from ≈11nm to 0.05nm. When the optical feedback is provided by a standard diffraction grating, a tuning range of 70nm is demonstrated. The addition of a second grating results in two independently tunable outputs, with an adjustable spectral separation of up to 53nm. Bragg gratings are fabricated in the cores of photosensitive germanosilicate optical fibres. It is demonstrated that when such a fibre is used in an external cavity configuration, both temporal and spectral compression of the optical pulses is observed. Direct frequency conversion of the diode laser output by using quasi-phase matched crystals of lithium niobate and KTP is demonstrated. High efficiencies are obtained with a KTP crystal containing a waveguide structure and a Bragg grating section to provide optical feedback to the diode laser. By this approach impressively high average second harmonic powers of up to 7.3mW in the blue spectral region are achieved for this frequency-doubled picosecond diode laser.
Type
Thesis, PhD Doctor of Philosopy
Collections
  • Physics & Astronomy Theses
URI
http://hdl.handle.net/10023/22031

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter