Show simple item record

Files in this item

FilesSizeFormatView

There are no files associated with this item.

Item metadata

dc.contributor.advisorBrierley, Andrew
dc.contributor.advisorBoehme, Lars
dc.contributor.authorLe Guen, Camille Melanie Marie-Anne
dc.coverage.spatialxx, 336 p.en_US
dc.date.accessioned2021-03-11T09:57:24Z
dc.date.available2021-03-11T09:57:24Z
dc.date.issued2020-12-01
dc.identifier.urihttps://hdl.handle.net/10023/21604
dc.description.abstractThis PhD addresses the central hypothesis that acoustic Deep Scattering Layers (DSLs) are a prey landscape for deep-diving air-breathing Southern Ocean predators. In the open ocean, mesopelagic fish (including myctophids), zooplankton and other animals migrate down from the surface at dawn to the mesopelagic zone (200-1000 m) to avoid visual predators during daylight. There, they form layer-like aggregations known as Deep Scattering Layers that can be detected using echosounders. A large component of DSL biomass is comprised of myctophids, which are both a potential resource for fisheries and important in the diets of several iconic Antarctic predators such as King Penguins (Aptenodytes patagonicus) and Southern Elephant Seals (Mirounga leonina). Although these two predator species are amenable to bio-logging, there are very few simultaneous observations of DSLs and their foraging behaviour. Therefore, the importance of DSLs to Antarctic air-breathing diving predators is unknown. This is problematic given the predicted changes in DSLs in response to climate change and to the increasing interest shown in DSL harvest by commercial fishers. The 2017 Antarctic Circumnavigation Expedition (ACE), which is the first scientific expedition around the Antarctic continent stopping at most subantarctic islands to investigate a range of aspects of the Southern Ocean, provided a unique opportunity to simultaneously observe DSL characteristics acoustically from the ACE ship (at 12.5 kHz) and the foraging behaviour of predators using bio-logging. King Penguins and female Southern Elephant Seals appeared as good candidates to study the link with DSLs as they both mainly feed on myctophids, are both deep-diving predators potentially capable of reaching the depth of DSLs and are both known to dive deeper during the day compared to night time (like the Diel Vertical Migration (DVM) pattern of the components of DSLs), several clues that initially suggest that DSLs could be a prey landscape for them. I compiled a dataset of DSL depth and echo-intensity (proxy for biomass) along the circum-continental cruise track (~ 90,000 km, across 6 different frontal zones) and obtained dive data from 18 adult King Penguins breeding at South Georgia and from 8 adult female Southern Elephant Seals breeding at Kerguelen. This study aims to describe the distribution of DSLs in the Southern Ocean in order to build a DSL biogeography for this region and to investigate whether these Antarctic deep-diving predators rely on DSLs for food. In Chapter 2, it was found that DSL echo-intensity (proxy for biomass) was a function of Sea Surface Temperature (SST), and that DSL depth was significantly related to sub-surface temperature and salinity or surface density. These relationships were used to infer DSL properties throughout the Southern Ocean, and especially at predator dive locations. In addition, rather than being ubiquitous, the data from the present study suggest that DSLs disappear in places where SST values become lower than -0.4°C. Results from Chapter 3 showed that Southern Elephant Seals seemed to reach the bottom of the principal DSL (i.e. strongest DSL) or the top of the deepest DSL (i.e. most predictable DSL). In contrast, results from chapter 4 revealed that King Penguins preferentially selected habitats with dense and shallow DSLs, where the availability of DSL components was supposedly high. However, the dive depths of penguins were generally shallower than the DSL, suggesting that they did not feed on the layers themselves, but on prey patches that were observed acoustically above them. These patches may be associated with the layers. DSLs, as a prey landscape for these two species, also play an important role in the biological pump of the ocean (acting on climate regulation by sequestering carbon at depth) due to their DVMs. It is likely that DVMs have other implications, such as vertical mixing of nutrients or transport of contaminants through the water column. In this regard, it was found that King Penguin faeces contain relatively high concentrations of microfibers, which were likely indirectly ingested (i.e. from migrating prey consumed at depth) and might potentially be deleterious for them (Chapter 5). Chick-rearing penguins had lower levels of contamination compared to incubating birds, which are known to perform longer foraging trips and to reach lower latitudes, and are potentially more exposed to microfibre contamination. In that way, results suggest that microfibres provide a potential signature of foraging in King Penguins. The importance of DSLs for contamination should be further investigated (including the impact of DVMs and the quantities of microplastics that are brought on land). These findings resulting from a multidisciplinary approach using in-situ and remote sensing environmental data, acoustic surveys and bio-logging improve our understanding of predator-prey interactions in the Southern Ocean. Although Antarctic focused, the present study is relevant more broadly because several seal and whale species also feed on DSL components. Because the Southern Ocean is undergoing various threats such as climate change, overfishing and marine pollution, our findings regarding the biophysical relationships with DSLs and the link between DSLs and Antarctic predators serve to improve our understanding of mesopelagic dynamics. This study informs ecosystem-based management and conservation, which now adopt more holistic approaches when monitoring and assessing ecosystem health status, before any large-scale fishery exploitation of mesopelagic fish begins.en_US
dc.description.sponsorship"This work was supported by the ACE Foundation (projects 5 and 19); the Natural Environment Research Council’s Collaborative Antarctic Science Scheme (CASS-129); and a Trans-Antarctic Association Grant to Richard Brain Sherley." -- Fundingen
dc.language.isoenen_US
dc.publisherUniversity of St Andrews
dc.relationAcoustic deep scattering layers as dynamic prey landscapes for air-breathing deep-diving Antarctic predators (thesis data) Le Guen, C.M.M.-A., University of St Andrews. DOI: https://doi.org/10.17630/d92c1af3-6149-4bb5-aa14-6fb00ef3a85aen
dc.relation.urihttps://doi.org/10.17630/d92c1af3-6149-4bb5-aa14-6fb00ef3a85a
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectAntarcticen_US
dc.subjectDiving predatorsen_US
dc.subjectAcousticsen_US
dc.subjectForaging ecologyen_US
dc.subjectPenguinsen_US
dc.subjectSealsen_US
dc.subjectDeep scattering layersen_US
dc.subjectMyctophidsen_US
dc.subject.lccQH91.8E3L4
dc.subject.lcshEcho scattering layers--Antarctic Oceanen
dc.subject.lcshLanternfishes--Antarctic Oceanen
dc.subject.lcshKing penguin--Food--Case studiesen
dc.subject.lcshElephant seals--Food--Case studiesen
dc.titleAcoustic deep scattering layers as dynamic prey landscapes for air-breathing deep-diving Antarctic predatorsen_US
dc.typeThesisen_US
dc.contributor.sponsorAntarctic Circumnavigation Expedition Foundationen_US
dc.contributor.sponsorNatural Environment Research Council (NERC)en_US
dc.contributor.sponsorTrans-Antarctic Associationen_US
dc.type.qualificationlevelDoctoralen_US
dc.type.qualificationnamePhD Doctor of Philosophyen_US
dc.publisher.institutionThe University of St Andrewsen_US
dc.rights.embargodate2023-10-14
dc.rights.embargoreasonThesis restricted in accordance with University regulations. Print and electronic copy restricted until 14th October 2023en
dc.identifier.doihttps://doi.org/10.17630/sta/41


The following licence files are associated with this item:

    This item appears in the following Collection(s)

    Show simple item record

    Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
    Except where otherwise noted within the work, this item's licence for re-use is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International