St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Applied Mathematics
  • Applied Mathematics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Applied Mathematics
  • Applied Mathematics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Applied Mathematics
  • Applied Mathematics Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

A model for solar flares and coronal heating based on magnetohydrodynamic avalanches

Thumbnail
View/Open
JackReidPhDThesis.pdf (93.29Mb)
Date
01/12/2020
Author
Reid, Jack
Supervisor
Hood, Alan W.
Parnell, Clare Elizabeth
Funder
Carnegie Trust for the Universities of Scotland
Keywords
Sun: corona
Sun: magnetic fields
Methods: numerical
Magnetohydrodynamics (MHD)
Magnetic reconnection
The Sun
Coronal heating
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The coronal heating problem addresses how temperatures in the solar atmosphere increase by millions of degrees, moving up from the cool surface, into the upper reaches of the atmosphere. This heating, known to be attributable to the magnetic field, has attracted several possible explanations. Attention here focuses on the viability and onset of magnetohydrodynamic avalanches. One means of transferring energy from interior convective motions is through photospheric motions, for example granulation and super-granulation. The power transferred by these photospheric motions stores energy in the global coronal magnetic field, and in coronal loops within active regions. The fields become highly braided, such that an ideal kink-mode instability occurs within one strand of a loop. Then, this instability rapidly expands, destabilizing the surrounding magnetic field, and destroying neighbouring threads. Bursty events occur in an intermittent, impulsive series, Parker's so-called nanoflares, above a largely steady background. This heating is then investigated in order to determine the respective contributions of the physical mechanisms of viscosity and resistivity. Arbitrary distributions of non-uniform heating occur across the domain. The localization and impulsiveness are investigated in respect of field-aligned heating properties. These heating profiles are tested in a hydrodynamic model of single coronal strands. This heating is found capable of maintaining approximately coronal conditions. Interestingly, three-dimensional MHD simulations and field-aligned, one-dimensional models produce similar behaviours, apart from in velocity, and this may have observable consequences. Throughout, magnetic reconnection is vital in contributing to coronal heating. Therefore, the onset and locations of reconnection are identified, and compared with several possible indicators. The widely used squashing factor, Q, little agrees with the sites of reconnection in a braided MHD field. Based on these results, magnetohydrodynamic avalanches can occur and produce sufficient energy to maintain the elevated temperatures of coronal loops.
DOI
https://doi.org/10.17630/sta/30
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Applied Mathematics Theses
URI
http://hdl.handle.net/10023/21489

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter