Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.advisorRoberts, Bernard
dc.contributor.authorMacnamara, Cicely K.
dc.coverage.spatial186en_US
dc.date.accessioned2011-12-12T10:30:42Z
dc.date.available2011-12-12T10:30:42Z
dc.date.issued2011-11-30
dc.identifier.urihttp://hdl.handle.net/10023/2101
dc.description.abstractIncreasing observational evidence of wave modes brings us to a closer understanding of the solar corona. Coronal seismology allows us to combine wave observations and theory to determine otherwise unknown parameters. The period ratio, P₁/2P₂, between the period P₁ of the fundamental mode and the period P₂ of its first overtone is one such tool of coronal seismology and its departure from unity provides information about the structure of the corona. In this thesis we consider the period ratio P₁/2P₂ of coronal loops from a theoretical standpoint. Previous theory and observations indicate that the period ratio is likely to be less than unity for oscillations of coronal loops. We consider the role of damping and density structuring on the period ratio. In Chapter 2 we consider analytically the one-dimensional wave equation with the inclusion of a generic damping term for both uniform and non-uniform media. Results suggest that the period ratio is dominated by longitudinal structuring rather than damping. In Chapter 3 we consider analytically the effects of thermal conduction and compressive viscosity on the period ratio for a longitudinally propagating sound wave. We find that damping by either thermal conduction or compressive viscosity typically has a small effect on the period ratio. For coronal values of thermal conduction the effect on the period ratio is negligible. For compressive viscosity the effect on the period ratio may become important for some short hot loops. In Chapter 4 we extend the analysis of Chapter 3 to include radiative cooling and find that it too has a negligible effect on the period ratio for typical coronal values. As an extension to the investigation, damping rates are considered for thermal conduction, compressive viscosity and radiative cooling. The damping time is found to be optimal for each mechanism in a different temperature range, namely below 1 MK for radiative cooling, 2 − 6 MK for thermal conduction and above 6 MK for compressive viscosity. In Chapter 5 we consider analytically the period ratio for the fast kink, sausage and n = N modes of a magnetic slab, discussing both an Epstein density profile and a simple step function profile. We find that transverse density structuring in the form of an Epstein profile or a step function profile may contribute to the shift of the period ratio for long thin slab-like structures. The similarity in the behaviour of the period ratio for both profiles means either can be used as a robust model. We consider also other profiles numerically for the kink mode, which are found to be either slab-like or Epstein-like suggesting again that it is not necessary to distinguish the nature of the density profile when considering the period ratio.en_US
dc.language.isoenen_US
dc.publisherUniversity of St Andrews
dc.rightsCreative Commons Attribution 3.0 Unported
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/
dc.subjectSolar physicsen_US
dc.subjectSolar wavesen_US
dc.subject.lccQB529.M62
dc.subject.lcshSun--Loop prominences--Mathematical modelsen_US
dc.subject.lcshSun--Coronaen_US
dc.titleThe period ratio P₁/2P₂ in coronal wavesen_US
dc.typeThesisen_US
dc.contributor.sponsorCarnegie Trust for the Universities of Scotlanden_US
dc.type.qualificationlevelDoctoralen_US
dc.type.qualificationnamePhD Doctor of Philosophyen_US
dc.publisher.institutionThe University of St Andrewsen_US


The following license files are associated with this item:

  • Creative Commons

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 3.0 Unported
Except where otherwise noted within the work, this item's license for re-use is described as Creative Commons Attribution 3.0 Unported