Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.advisorElliott, Richard Michael
dc.contributor.authorVater, Sandra
dc.coverage.spatial240en_US
dc.date.accessioned2011-12-01T16:12:20Z
dc.date.available2011-12-01T16:12:20Z
dc.date.issued2011-11-30
dc.identifieruk.bl.ethos.552626
dc.identifier.urihttps://hdl.handle.net/10023/2075
dc.description.abstractThe influenza A virus genome codes for up to 12 proteins. Segment 2 encodes three proteins, the polymerase subunit PB1, a small protein PB1-F2 and an N-terminally truncated version of PB1 called N40. Different functions have been reported for PB1-F2 such as induction of apoptosis, regulation of the viral polymerase activity, enhancement of secondary bacterial infections and modulation of the innate immune system. So far, no function has been ascribed to N40. To study PB1-F2 in more detail, its coding sequence was deleted from its original position and inserted downstream of the PB1 (segment 2), NA (segment 6) or M (segment 7) open reading frames (ORF) employing different strategies, including the use of an overlapping Stop-Start cassette, a duplicated promoter sequence and the self-cleaving 2A peptide derived from foot-and-mouth disease virus. Viruses with bicistronic segments were rescued and tested for their ability to express PB1-F2. Whereas no expression of PB1-F2 was detected from bicistronic segments 2 and 7, expression of PB1-F2 from segment 6 was observed in high levels. However, the phenotype of all these viruses was similar to that of viruses lacking PB1-F2 which made mutational analysis of PB1-F2 not worthwhile. Previously, the function of PB1-F2 was mainly studied using a virus deficient in PB1-F2 production but showing increased N40 expression. In the present study, recombinant WSN viruses lacking either PB1-F2 or N40, or both proteins were engineered and the effects of these mutations on the viral life cycle were examined. Viruses deficient for PB1-F2 that overexpressed N40 showed the most attenuated phenotype, whereas the loss of PB1-F2 alone did not obviously affect virus replication. Reduced viral polymerase activity was observed for viruses lacking N40, however attenuation in vivo was only seen in combination with the loss of PB1-F2. Neither the loss of PB1-F2 nor N40 alone had a great impact, but changes in the expression level of both proteins were disadvantageous for the virus. Increased levels of N40 shifted the polymerase activity towards replication, suggesting a new function for N40. Thus, it was shown that the segment 2 gene products and their expression level influence viral replication and pathogenicity, and a careful design of mutant recombinant viruses is vital for determining the experimental outcome.en_US
dc.language.isoenen_US
dc.publisherUniversity of St Andrews
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/
dc.subjectPB1-F2en_US
dc.subjectReplicationen_US
dc.subjectN40en_US
dc.subjectVirulenceen_US
dc.subject.lccQR460.V2
dc.subject.lcshViral proteinsen_US
dc.subject.lcshInfluenza A virusen_US
dc.subject.lcshViruses--Reproductionen_US
dc.titleStudies on influenza A virus PB1-F2 proteinen_US
dc.typeThesisen_US
dc.type.qualificationlevelDoctoralen_US
dc.type.qualificationnamePhD Doctor of Philosophyen_US
dc.publisher.institutionThe University of St Andrewsen_US


The following licence files are associated with this item:

  • Creative Commons

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
Except where otherwise noted within the work, this item's licence for re-use is described as Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported