St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Strong matter-light coupling with organic molecules and inorganic semiconductors

Thumbnail
View/Open
ArtemStrashko_PhDThesis.pdf (5.184Mb)
Date
03/12/2019
Author
Strashko, Artem
Supervisor
Keeling, Jonathan Mark James
Funder
Engineering and Physical Sciences Research Council (EPSRC)
Scottish Doctoral Training Centre in Condensed Matter Physics (CM-CDT)
Metadata
Show full item record
Abstract
This dissertation studies the effects of strong matter-light coupling on properties of organic molecules and inorganic semiconductors. The interplay of complex intramolecular dynamics and strong coupling of a photon to molecular transitions results in new physics having no counterparts in other systems. In contrast, low-energy optically active excitations of semiconductors (excitons) usually do not feature such complexity. However, the combination of strong electronic correlations and strong matter-light coupling leads to new physics. Firstly, the effect of strong coupling between molecular vibrations and infrared photons on Raman scattering (RS) is considered. This is motivated by the experiment of Ref. [1] showing up to 10³ enhancement of RS signal under strong coupling. While the exact analytical results of this dissertation predict around 100% enhancement of total RS signal, they cannot explain orders of magnitude enhancement, leaving the question open for further studies. Next, the effects of strong coupling of an optical photon and a molecular electronic transition on molecular lasing properties are discussed. Starting from a microscopic description of a driven-dissipative system, an exact (in the thermodynamic limit) mean-field solution is developed. It allows to uncover the mechanism of molecular lasing in the weak and strong coupling regime and to obtain a non-equilibrium lasing phase diagram. Finally, a semiconductor with different densities of electrons and holes, strongly coupled to a microcavity photon, is studied. While finite electron-hole density imbalance is detrimental for excitonic condensation, it may still lead to a condensed state of excitons with finite centre of mass momentum coexisting with unpaired electrons. On the other hand, due to its low mass, a photon favours zero center of mass momentum condensation. The variational mean-field calculations reveal that the interplay of these effects leads to a variety of novel states with coexisting polariton condensate and unpaired electrons.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Physics & Astronomy Theses
Description of related resources
Strong matter-light coupling with organic molecules and inorganic semiconductors (thesis data) Strashko, A., University of St Andrews, 2020. DOI: https://doi.org/10.17630/e8d899d3-7c86-4919-8076-5e7ea746e5cf
Related resources
https://doi.org/10.17630/e8d899d3-7c86-4919-8076-5e7ea746e5cf
URI
http://hdl.handle.net/10023/20306

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter