St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Femtosecond lasers for datacommunications applications

Thumbnail
View/Open
ChristopherLeburnPhDThesis.pdf (18.32Mb)
Date
30/11/2005
Author
Leburn, Christopher Gilmour
Supervisor
Sibbett, Wilson
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
The work presented in this thesis details the development of all-solid-state ultrashort pulsed lasers suitable for datacommunications applications at either 1300nm or 1550nm. This is achieved through the design and construction of three different types of laser system based on the gain materials Cr⁴⁺:forsterite (chromium-doped magnesium iron silicate) and Cr⁴⁺:YAG (chromium-doped yttrium aluminium garnet). A Cr⁴⁺:forsterite based system is the first laser that is presented. This configuration utilises a relatively novel GalnNAs semiconductor device to initiate the generation of 130fs pulses around 1300nm. Although GalnNAs devices have previously been used to generate pulses of light in the picosecond domain, this is the first time ultrashort pulses have been achieved in the femtosecond domain. As such, it has been possible to use the results from this laser system to further the understanding of various dynamics of GalnNAs devices. An SBR mode-locked Cr⁴⁺:YAG laser system introduces the concept of Femtosecond pulse generation around 1550nm. This is done in order to lay the necessary foundations for understanding the motivation and physics behind high pulse repetition frequency (prf) all-solid state femtosecond lasers suitable for datacommunications applications. Details are then given for the construction and operation of a simple 3-element Cr⁴⁺:YAG laser that generates 70fs pulses at a prf greater than 4GHz. The success of this system leads to the development of a compact and robust engineered prototype with a footprint of 215x 106mm². Integration of the high prf laser systems into novel optical time division multiplexing/wavelength division multiplexing (OTDM/WDM) based assessments prove successful with the demonstration of a datacommunications system capable of generating 1.36Tb/s. This still remains to be the only system capable of achieving such a high capacity from a single source and demonstrates the ongoing success of femtosecond lasers through continued research and development.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Physics & Astronomy Theses
URI
http://hdl.handle.net/10023/20055

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter