St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ultrafast photophysics of iridium complexes

Thumbnail
View/Open
GordonHedleyPhDThesis.pdf (7.176Mb)
Date
30/11/2010
Author
Hedley, Gordon J.
Supervisor
Samuel, Ifor D. W.
Keywords
Ultrafast
Photophysics
Chemical physics
Transition metal complex
Iridium
Phosphorescence
Metadata
Show full item record
Abstract
This thesis presents ultrafast photophysical measurements on a number of phosphorescent iridium complexes and establishes relationships between the relaxation rates and the vibrational properties of the material. When ultrafast luminescence is measured on the peak of the phosphorescence spectrum and on its red-side, 230 fs and 3 ps decay time constants were observed in all materials studied, and this was attributed to population redistribution amongst the three electronic substates of the lowest triplet metal-ligand charge transfer (MLCT) state. The observation of luminescence at higher values of energy embodied ultrafast dissipation of excess energy by intramolecular vibrational redistribution (IVR) and it was found that the dissipation channels and rate of IVR could be modified by chemical modification of the emitting molecule. This was tested in two ways. Firstly by adding electronically inactive dendrons to the core, an increase in the preference for dissipation of excess energy by IVR rather than by picosecond cooling to the solvent molecules was found, but this did not change the rate of IVR. The second method of testing was by fusing a phenyl moiety directly onto the ligand, this both increased the rate of IVR and also the preference for dissipation by it rather than by picosecond cooling. Fluorescence was recorded in an iridium complex for the first time and a decay time constant of 65 fs was found, thus allowing a direct observation of intersystem crossing (ISC) to be made. In a deep red emitting iridium complex internal conversion (IC) and ISC were observed and the factors controlling their time constants deduced. IC was found to occur by dissipation of excess energy by IVR. The rate of IC was found to be dependent on the amount of vibrational energy stored in the molecule, with IC fast (< 45 fs) when < 0.6 eV of energy is stored and slower (~ 70 fs) when the value is > 0.6 eV. The rate of ISC agreed with these findings, indicating that the very process of ISC may be thought of as closely analogous to that of IC given the strongly spin-mixed nature of the singlet and triplet MLCT states.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Physics & Astronomy Theses
URI
http://hdl.handle.net/10023/1981

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter