Electron acceleration in auroral field-aligned currents
Abstract
Field-aligned currents at Earth's high latitudes are principally carried by accelerated electrons. Current
densities, typically ~µAm⁻² at ionospheric altitudes, are sustained by parallel potential drops of ~100 - 1000 V. This Thesis
presents Vlasov models of upward and downward current regions, where electrons are
described via distribution functions. The ion
density profile is fixed, and quasi-neutrality is invoked to solve
numerically for the potential variation.
In both cases, an ambipolar electric field traps ionospheric electrons. For downward currents, an energetic ionospheric electron beam emerges into the magnetosphere where it is accelerated around the B/n
peak at altitudes of 500 - 6000 km to carry the current. The electric field maximises just Earthward of
the
B/n peak. The magnitude and altitude of the potential is found to depend solely on the equilibrium
properties immediately above the B/n peak. An analytic non-linear current-voltage relation, analagous to the linear
Knight relation for upward currents, is derived.
Energetic magnetospheric electrons precipitate into the ionosphere to carry upward currents. The continuous
potential variation is solved for current densities ~1 µAm⁻². Acceleration extends above the B/n
peak for ~1 R[sub]E, and is increasingly concentrated at the peak for higher current densities. The presence
of
mirroring electrons is vital to the system, as they play a major role in satisfying quasi-neutrality, and
support the majority of the parallel electric field.
Ion outflow is a feature of both current
regions, but is stronger and extends to lower altitudes for down¬
ward currents: this is presented as a possible explanation for observed lower-altitude acceleration in downward currents
compared to upward currents.
The effect of downward currents on E region number density is studied using an Alfven wave model
of
magnetosphere-ionosphere interaction, employing a height-integrated Pedersen conductivity. It is found
that
significant E region depletion and current broadening are more common on the nightside than on the
dayside, and occur in ~ 10 - 100 s.
Type
Thesis, PhD Doctor of Philosophy
Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.