Show simple item record

Files in this item

FilesSizeFormatView

There are no files associated with this item.

Item metadata

dc.contributor.advisorPitt, Samantha Jane
dc.contributor.authorRobertson, Gavin B.
dc.coverage.spatialxx, 217 p.en_US
dc.date.accessioned2019-12-04T09:13:10Z
dc.date.available2019-12-04T09:13:10Z
dc.date.issued2019-06-28
dc.identifier.urihttps://hdl.handle.net/10023/19064
dc.description.abstractCarefully controlled intracellular Ca²⁺-release is essential for maintenance of normal cardiac function. In failing hearts, dysregulated Zn²⁺-homeostasis is associated with disrupted intracellular Ca²⁺-homeostasis, however the underlying molecular mechanisms remain elusive. Mitsugumin 23 (MG23) is a newly identified SR Ca²⁺- permeable ion channel found in sarcoplasmic reticulum (SR) membranes, challenging understanding that RyR2 is the only SR Ca²⁺-release channel. The major hypothesis of this thesis is that MG23 is a Zn²⁺-regulated SR Ca²⁺-leak channel, and that this function plays a key role in disease progression mechanisms in heart failure. The aim of this study was to investigate at the molecular level how Zn²⁺ regulates MG23-channel function and how this shapes intracellular Ca²⁺-dynamics in the failing heart. Using single-channel electrophysiological techniques, this study demonstrated that RyR2 is not the only SR Ca²⁺-channel directly modulated by Zn²⁺. Pathophysiological (≥1 nM) levels of cytosolic Zn²⁺ potentiated MG23-channel activity, with the current amplitude of MG23-channel openings found to be consistent to that previously reported as RyR2 sub-conductance gating. In bilayer experiments using SR vesicles isolated from MG23 knock-out mice, RyR2 sub-conductance gating was never observed. These data reveal that following elevation of Zn²⁺ in heart failure, RyR2 sub-conductance gating does not occur but rather MG23-channel gating becomes exacerbated likely resulting in cardiac dysfunction. Live-cell Ca²⁺-imaging in isolated mouse cardiomyocytes demonstrated that MG23 function as a Ca²⁺-leak channel is an important determinant of SR Ca²⁺ content. In cardiomyocytes exposed to ischaemia, MG23-mediated Ca²⁺-leak provided cardioprotection against SR Ca²⁺-store overload-induced spontaneous Ca²⁺-release. Increased MG23 protein expression observed following prolonged exposure to hypoxia may contribute to altered Ca²⁺-dynamics associated with cardiac remodelling in chronic heart failure. This study also provided the first demonstration of the Zn²⁺-permeability of MG23, suggesting that MG23 can mediate SR Zn²⁺-flux following redistribution of ionic balance across the SR membrane during EC-coupling or following disruption of homeostatic mechanisms. Taken together these findings identify a key role for MG23 as a SR Ca²⁺-leak channel in both normal and disrupted cardiac function, highlighting MG23 as a potential therapeutic target in the treatment of the failing heart.en_US
dc.language.isoenen_US
dc.publisherUniversity of St Andrews
dc.titleA role for mitsugumin 23 in cardiac sarcoplasmic reticulum calcium leaken_US
dc.typeThesisen_US
dc.contributor.sponsorBritish Heart Foundationen_US
dc.type.qualificationlevelDoctoralen_US
dc.type.qualificationnamePhD Doctor of Philosophyen_US
dc.publisher.institutionThe University of St Andrewsen_US
dc.rights.embargodate2024-05-28
dc.rights.embargoreasonThesis restricted in accordance with University regulations. Print and electronic copy restricted until 28th May 2024en
dc.identifier.doihttps://doi.org/10.17630/10023-19064


This item appears in the following Collection(s)

Show simple item record