St Andrews Research Repository

St Andrews University HomeSt Andrews University Library
View Item 
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

New frontiers in strain-tuning : apparatus development, and tuning of the nemacity of FeSe across a wide strain range

Date
24/06/2019
Author
Bartlett, Jack Michael
Supervisor
Mackenzie, Andrew
Funder
Engineering and Physical Sciences Research Council (EPSRC)
Scottish Doctoral Training Centre in Condensed Matter Physics (CM-CDT)
Max-Planck-Gesellschaft zur Förderung der Wissenschaften
Metadata
Show full item record
Abstract
Over the last decade, an ‘iron age’ of superconductivity has challenged the paradigm of unconventional pairing established by copper-oxide-based materials. Fascinatingly, in these iron-based compounds superconductivity emerges from a state in which electrons choose to distinguish between two equivalent directions of the underlying crystalline axes. The origin of this ‘nematic’ state is highly debated. This thesis concentrates on FeSe, a material appealing because its nematicity does not occur in proximity to long-range magnetic order. Although uniaxial strain couples to nematic order, experiments to date have focused on applying only a small symmetry-breaking strain. The mechanical properties of FeSe make utilising established piezoelectric-based apparatus, designed for continuous tuning of large uniaxial strains, challenging. In this thesis we develop a platform to which samples can be adhered, and apply large anisotropic strain to FeSe. When of the same symmetry as the nematicity, and larger than the structural distortion, this applied strain fully constrains the lattice. We provide a precise set of resistivity measurements across a wide temperature and strain range, revealing vital new phenomenologies. We establish the relationship between electrical transport and nematicity across a large strain range at the structural transition and, by isolating the influence of domain walls, characterise the elastoresistivity for temperatures below this transition. By tracking the onset of domain formation, we determine the temperature dependence of the spontaneous structural distortion, and use this to extract the intrinsic resistivity anisotropy within a single nematic domain. Interestingly, we discover a crossover at ~ 50 K between distinct high- and low-temperature behaviours. This thesis is also concerned with the development of apparatus for tuning strain. We conceptualise a new type of stress-controlled cell, which can apply large (up to 8 GPa in compression) uniaxial stresses to microstructured samples – pushing them to their ultimate mechanical limit.
Type
Thesis, PhD Doctor of Philosophy
Rights
Embargo Date: 2021-05-30
Embargo Reason: Thesis restricted in accordance with University regulations. Print and electronic copy restricted until 30th May 2021
Collections
  • Physics & Astronomy Theses
URI
http://hdl.handle.net/10023/19058

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

How to submit research papers

The full text of research papers can be submitted to the repository via PURE, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter