St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Linear and nonlinear optical properties of silica aerogel

Thumbnail
View/Open
AdamFlemingPhDThesis.pdf (18.23Mb)
Date
03/12/2019
Author
Fleming, Adam Colin
Supervisor
Di Falco, Andrea
Funder
Engineering and Physical Sciences Research Council (EPSRC)
Keywords
Light scattering
Nonlinear
Transmission matrix
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Scattering media have traditionally been seen as a hindrance to the controlled transport of light through media, creating the familiar speckle pattern. However such matter does not cause the loss of information but instead performs a highly complex deterministic operation on the incoming flux. Through sculpting the properties of the incoming wavefront, we can unlock the hidden characteristics of these media, affording us far more degrees of freedom than that which is available to us in traditional ballistic optics. These additional degrees of freedom have allowed for the creation of compact sophisticated optical devices based only on the deterministic nature of light scattering. Such devices include diffraction-limit-beating lenses, polarimeters, spectrometers, and some which can transmit entire images through a scattering substance. Additional degrees of freedom would allow for the creation of even more powerful devices, in new working regimes. In particular, the application of related techniques where the scattering material is actively modified is limited. This thesis is concerned with the use of optothermal nonlinearity in random media as a way to provide an additional degree of control over light which scatters through it. Specifically, we are concerned with silica aerogel as a platform for this study. Silica aerogel is a lightweight skeletal structure of silica fibrils, which results in a material which is up to 99.98 % by volume. This material exhibits a unique cocktail of properties of use such as near unitary refractive index, an order of magnitude lower thermal conductivity, and high optothermal nonlinearity. The latter two of these properties allow for the creation of localised steep thermal gradients, proportionally affecting the low refractive index significantly. Additionally through differing fabrication steps, the opacity, and as a result, we can adjust the scattering strength. In line with the development of light deterministic light scattering techniques in linear media, we develop through the use of pump-probe setups, a framework for the development of a similar line of techniques in nonlinear scattering media. We show that we can reversibly control the far-field propagation of light in weakly scattering silica aerogel. Following this, we show that nonlinear perturbation can be used to extend and modify the optical memory effect, where slight adjustments in scattering direction maintain the overall correlation of the scattered profile. Finally, we measure the nonlinear transmission matrix, a complete description of how any wavefront would pass through at a particular point in a scattering media, and how that scattering can be modified through the application of an optothermal nonlinearity. Extending the tool of scattering media into the nonlinear regime helps pave the way toward the next set of advances in the field of light scattering control.
DOI
https://doi.org/10.17630/10023-18557
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Physics & Astronomy Theses
Description of related resources
Linear and nonlinear optical properties of silica aerogel (Thesis data) Fleming, A., University of St Andrews, 9 August 2019. DOI: https://doi.org/10.17630/906a13bf-413d-472e-b479-15e50b441994
Related resources
https://doi.org/10.17630/906a13bf-413d-472e-b479-15e50b441994
URI
http://hdl.handle.net/10023/18557

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter