Portable and versatile cold atom experiments
View/ Open
Date
24/06/2019Author
Supervisor
Funder
Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
This thesis describes the progress achieved towards two goals. One is the construction of a
compact magneto-optical trap (MOT) apparatus, used both as a standalone undergraduate
laboratory experiment and as part of a public engagement demonstration of cold atom
physics. The setup, which utilises a dichroic atomic vapour laser lock (DAVLL) system
plus homemade sideband generation electronics, is capable of trapping and cooling up to 8x10⁷ ⁸⁵Rb atoms in a standard six-beam laser cooling scheme.
The second goal is the loading of an ultracold ensemble of ⁸⁷Rb atoms into novel
optical trap geometries using a phase-only liquid crystal spatial light modulator (LC SLM)
for applications to atomtronics and quantum simulation. Details of a double vacuum
chamber apparatus, designed to produce the first Bose-Einstein condensates (BECs) at St
Andrews, are provided. The setup incorporates a hybrid trap evaporative cooling scheme
towards quantum degeneracy and reliably produces BECs of 1.9 10⁵ ⁸⁷Rb atoms. Two
computational techniques, developed during the course of this project, are presented with
the aim of creating flexible, smooth holographic optical traps. The first method illuminates
a single SLM with overlapped, co-propagating light beams of different wavelengths to create
a composite optical pattern for atom manipulation. The second uses conjugate gradient
minimisation to create exceptionally high fidelity light patterns in both amplitude and
phase for light in the output plane. These techniques, combined with the implementation
of a light sheet into the experimental setup, are used to trap atoms in both a ring profile
and in a set of narrow waveguides connected with a tunnelling barrier.
Type
Thesis, PhD Doctor of Philosophy
Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.