St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Information transfer in open quantum systems

Thumbnail
View/Open
ElliottLeviPhDThesis.pdf (16.03Mb)
Date
21/06/2017
Author
Levi, Elliott Kendrick
Supervisor
Lovett, Brendon W.
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
This thesis covers open quantum systems and information transfer in the face of dissipation and disorder through numerical simulation. In Chapter 3 we present work on an open quantum system comprising a two-level system, single bosonic mode and dissipative environment; we have included the bosonic mode in the exact system treatment. This model allows us to gain an understanding of an environment’s role in small energy transfer systems. We observe how the two-level system-mode coupling strength and the spectral density form characterising the environment interplay, affecting the system’s coherent behaviour. We find strong coupling and a spectral density resonantly peaked on the two-level system oscillation frequency enhances the system’s coherent oscillatory dynamics. Chapter 4 focusses on a physically motivated study of chain and ladder spin geometries and their use for entanglement transfer between qubits. We consider a nitrogen vacancy centre qubit implementation with nitrogen impurity spin-channels and demonstrate how matrix product operator techniques can be used in simulations of this physical system. We investigate coupling parameters and environmental decay rates with respect to transfer efficiency effects. Then, in turn, we simulate the effects of missing channel spins and disorder in the spin-spin coupling. We conclude by highlighting where our considered channel geometries outperform each other. The work in Chapter 5 is an investigation into the feasibility of routing entanglement between distant qubits in 2D spin networks. We no longer consider a physical implementation, but keep in mind the effects of dissipative environments on entanglement transfer systems. Starting with a single sending qubit-ancilla and multiple addressable receivers, we show it is possible to target a specific receiver and establish transferred entanglement between it and the sender’s ancilla through eigenstate tunnelling techniques. We proceed to show that eigenstate tunnelling-mediated entanglement transfer can be achieved simultaneously from two senders across one spin network.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Physics & Astronomy Theses
URI
http://hdl.handle.net/10023/16690

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter