St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Earth & Environmental Sciences and Geography & Sustainable Development (Schools of)
  • School of Earth & Environmental Sciences
  • Earth & Environmental Sciences Theses
  • View Item
  •   St Andrews Research Repository
  • Earth & Environmental Sciences and Geography & Sustainable Development (Schools of)
  • School of Earth & Environmental Sciences
  • Earth & Environmental Sciences Theses
  • View Item
  •   St Andrews Research Repository
  • Earth & Environmental Sciences and Geography & Sustainable Development (Schools of)
  • School of Earth & Environmental Sciences
  • Earth & Environmental Sciences Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

The application of highly resolved tree-ring isotopes for reconstructing the ecohydrological interactions within riparian forests

Date
15/01/2018
Author
Sargeant, Christopher
Supervisor
Singer, Michael B.
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The research conducted within this thesis aims to advance our understanding of plant-water interactions, specifically the identification of the source(s) of water available for tree growth within riparian zones. Through highly resolved tree ring isotopic analyses, it is possible to deconvolve the δ¹⁸O signature of water utilised by a tree during the growing season and relate this to dynamic hydroclimatic processes. In doing so, this methodology allows for the reconstruction of the seasonal evolution of tree source water availability for the historical period. The utility of this method is initially demonstrated for the determination of the isotopic signature of water utilised by individuals of co-occuring riparian tree species over ten consecutive years. It is found that species-specific seasonal source water variability is indicative of tree rooting depth and the hydroclimatic partitioning of water to each of the floodplain hydrological reservoirs. The technique is then developed in to a methodological ‘toolkit’, comprised of tool groups representing differing levels of data availability. The aim is to enable continued progress in this research area, even under conditions of sub-optimal data availability, whilst also making the suite of methods accessible to other researchers and resource managers. Finally, the hydroclimatic expression of seasonal tree source water avaialbility is characterised across a climate gradient utilising over 800 δ¹⁸O cellulose measurements. The results show that the seasonal progression of tree water availability responds to near- and far-field hydroclimatic processes, but this is mediated by species’ functional type and site lithology. Where near-field processes dominate water availability, there is a potential for increased vulnerability to localised drought conditions and species-specific competition for water resources. Retrodictions of seasonal water source use may prove useful in forest restoration and rehabilitation efforts, assessment of forest vulnerability to future hydroclimatic regimes and for improving agroforestry and sustainable water management practices.
DOI
https://doi.org/10.17630/10023-16672
Type
Thesis, PhD Doctor of Philosophy
Rights
Embargo Date: 2020-01-18
Embargo Reason: Thesis restricted in accordance with University regulations. Print and electronic copy restricted until 15th January 2020
Collections
  • Earth & Environmental Sciences Theses
URI
http://hdl.handle.net/10023/16672

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter