St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Psychology & Neuroscience (School of)
  • Psychology & Neuroscience
  • Psychology & Neuroscience Theses
  • View Item
  •   St Andrews Research Repository
  • Psychology & Neuroscience (School of)
  • Psychology & Neuroscience
  • Psychology & Neuroscience Theses
  • View Item
  •   St Andrews Research Repository
  • Psychology & Neuroscience (School of)
  • Psychology & Neuroscience
  • Psychology & Neuroscience Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Exploring how object shape and binocular vision interact to make or break camouflage

Thumbnail
View/Open
PCammackPhDThesis.pdf (9.686Mb)
Date
20/06/2017
Author
Cammack, Philip
Supervisor
Harris, Julie
Funder
Engineering and Physical Sciences Research Council (EPSRC)
University of St Andrews
University of St Andrews. School of Psychology and Neuroscience
Biotechnology and Biological Sciences Research Council (BBSRC)
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
Depth perception is a major component of 3D vision. There are many cues to depth; one particularly sensitive aspect is the vivid perception of depth created from having eyes with overlapping visual fields (binocular vision). As the eyes are located at different points in space, they see different views of the scene – these slight differences (called binocular disparity) can be used to obtain depth information. However, extracting depth from disparity requires complex visual processing. So why use binocular vision? Julesz (1971) proposed an explanation – camouflaged animals can fool the perception of some cues to 3D shape, but camouflage is ineffective against binocular vision. We would expect that animals with binocular vision could see the 3D shape of animals, despite their camouflage. Whilst commonly accepted, this hypothesis has not been tested in detail. In this thesis, we present experiments designed to establish how depth from binocular vision interacts with camouflage and object shape. Two main questions were addressed: First, we explored how the visual system represented depth information about 3D objects from binocular disparity. Objects with smooth depth edges (hill-shaped) were perceived with less depth than sharper edged objects. A computational model that segregated the object, then averaged the disparity over the segregated region emulated human performance. Finally, we found that disparity and luminance cues interacted to alter perceived depth. Secondly, we investigated if binocular vision could overcome camouflage. We found that camouflaged objects defined by luminance were detected faster when also defined by depth from disparity, thus reduces the effect of camouflage. Smooth objects were detected slower than sharp objects: an effect that was replicated in the real world, suggesting a camouflage technique to counter binocular vision. In summary, binocular vision is useful because it can detect camouflaged objects. However, smoother shapes take longer to spot, forming binocular (or stereoscopic) camouflage.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Psychology & Neuroscience Theses
URI
http://hdl.handle.net/10023/16624

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter