Exploring how object shape and binocular vision interact to make or break camouflage
View/ Open
Date
20/06/2017Author
Supervisor
Funder
Metadata
Show full item recordAltmetrics Handle Statistics
Abstract
Depth perception is a major component of 3D vision. There are many cues to depth; one
particularly sensitive aspect is the vivid perception of depth created from having eyes with
overlapping visual fields (binocular vision). As the eyes are located at different points in
space, they see different views of the scene – these slight differences (called binocular
disparity) can be used to obtain depth information. However, extracting depth from
disparity requires complex visual processing. So why use binocular vision?
Julesz (1971) proposed an explanation – camouflaged animals can fool the perception of
some cues to 3D shape, but camouflage is ineffective against binocular vision. We would
expect that animals with binocular vision could see the 3D shape of animals, despite their
camouflage. Whilst commonly accepted, this hypothesis has not been tested in detail. In
this thesis, we present experiments designed to establish how depth from binocular vision
interacts with camouflage and object shape. Two main questions were addressed:
First, we explored how the visual system represented depth information about 3D objects
from binocular disparity. Objects with smooth depth edges (hill-shaped) were perceived
with less depth than sharper edged objects. A computational model that segregated the
object, then averaged the disparity over the segregated region emulated human
performance. Finally, we found that disparity and luminance cues interacted to alter
perceived depth.
Secondly, we investigated if binocular vision could overcome camouflage. We found that
camouflaged objects defined by luminance were detected faster when also defined by
depth from disparity, thus reduces the effect of camouflage. Smooth objects were detected
slower than sharp objects: an effect that was replicated in the real world, suggesting a
camouflage technique to counter binocular vision.
In summary, binocular vision is useful because it can detect camouflaged objects. However,
smoother shapes take longer to spot, forming binocular (or stereoscopic) camouflage.
Type
Thesis, PhD Doctor of Philosophy
Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.