St Andrews Research Repository

St Andrews University HomeSt Andrews University Library
View Item 
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Membrane interactions of plant virus movement proteins

Date
2018
Author
Aitken, Angus Iain
Supervisor
Tilsner, Jens
Smith, Terry K.
Funder
Biotechnology and Biological Sciences Research Council (BBSRC)
University of St Andrews
James Hutton Institute
Metadata
Show full item record
Abstract
Plant viruses post a significant risk to both global food security, and industrial agriculture, however very little is known regarding their molecular mechanisms. Despite intensive study since the discovery of a multitude of plant virtual movement proteins, it remains unknown how they transverse the plasmodesmata, and thus move between cells. The CMV virus is widespread, infecting over a thousand plant species, and yet the means by which the movement protein CMV 3a associates to cellular membranes, targets itself and viral genomes to plasmodesmata have not been described. This study initially attempted to purify the CMV 3a protein from bacterial expression for structural and biophysical studies to examine viral protein and host membrane interactions. The study also began mapping the CMV 3a protein surface to investigate protein localisation and membrane attachment in planta, identifying structural features, including two potentially amphipathic helices which bear further investigation for potential roles in membrane association. Finally, this thesis examined the potential for the lipid modification S-acylation (Palmitoylation) as a membrane anchor, across a range of viral movement proteins. Describing this modification of viral movement proteins for the first time, S-acylation was demonstrated to not only be widespread, but potentially play different roles across a range of plant virus movement systems. This information is vital for the advancement of the field’s understanding of the cell to cell movement of plant viruses, and the potential development of control strategies; and hence the safeguarding of global food security.
Type
Thesis, PhD Doctor of Philosophy
Rights
Embargo Date: 2020-02-23
Embargo Reason: Thesis restricted in accordance with University regulations. Print and electronic copy restricted until 23rd February 2020
Collections
  • Biology Theses
URI
http://hdl.handle.net/10023/15617

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

How to submit research papers

The full text of research papers can be submitted to the repository via PURE, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter