St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Radiofrequency analysis using optical signal processing

Thumbnail
View/Open
WNDawberPhDThesis.pdf (34.13Mb)
Date
07/1991
Author
Dawber, W. N.
Supervisor
Maitland, Arthur
Funder
Admiralty Research Establishment
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
The basic form of conventional electronic and acoustooptic radiofrequency spectrum analysers is described. The advantages and disadvantages of the various systems are discussed with particular reference to radar signal processing in a hostile environment. Acoustooptic interaction is described using electromagnetic wave theory and also in terms of particle dynamics. A discussion of the various factors which effect Bragg-cell performance is presented, together with experimental results from the characterisation of acoustooptic cells. Coherent light detection is described when used in conjunction with a Bragg-cell spectrum analyser. Using this approach the dynamic range of the device may be dramatically increased. A novel approach is described which uses optical fibres in the Fourier transform plane and fusion spliced couplers to combine the signal and local oscillator beams. Experimental results are presented using single-mode fibres. Improvements in diffraction efficiency, reduced material intermodulation and increased frequency resolution are possible in an acoustooptic spectrum analyser if a Bragg-cell with a long transducer is used. However this leads to reduced instantaneous bandwidth in a conventional configuration. Two new approaches are described which allow a long transducer to be used without loss of bandwidth. An analysis of Bragg-cell diffraction within active and passive resonant optical cavities shows the diffraction efficiency per watt of a Bragg-cell may be increased by orders of magnitude by placing it within a passive cavity. Various cavity configurations are analysed and experimental results are given. A temporal analysis of light diffracted from radiofrequency pulses within an acoustooptic Bragg-cell is presented. Experimental evidence backs up the theory, which shows a possible means of eliminating the "Rabbit's Ears" phenomenon. Conventional acoustooptic Bragg cells have bandwidths limited by the acoustic losses in the crystals used for the cells and impedance matching of the transducer to the driver and crystal. Commercial cells are available with bandwidths of several gigahertz. Many applications require significantly larger bandwidths than are offered by conventional Bragg cells. We describe a new kind of diffraction cell with a potential bandwidth in excess of fifty gigahertz. The theory of operation and an example design are presented. A novel ultra-high data rate optical communication link is described. This makes use of the temporal distribution produced by light diffracted from radiofrequency pulses within a Bragg-cell. Also a covert, free-space link is described. A two channel system is demonstrated using acoustooptic cells.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Physics & Astronomy Theses
URI
http://hdl.handle.net/10023/15035

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter