St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

The structure and properties of human fibrinogen fragment D

Thumbnail
View/Open
JanLawriePhDThesis.pdf (17.54Mb)
Date
1980
Author
Lawrie, Jan Sloane
Supervisor
Kemp, Graham
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
(1) Three molecular weight forms of fragment D were isolated from a plasmic digest of human fibrinogen. Further heterogeneities within the preparation were revealed by NH2-terminal amino acid analysis and by digestion studies performed in the presence of 2 N-urea; the existence of conformationally different forms of the fragment D molecule is proposed. (2) Plasmic digestion of fibrinogen in the presence of 2 md-Ca2+ produced a homogeneous high molecular weight preparation of fragment D (designated DCa 2+) In the absence of Ca2+ or in the presence of EDTA, two lower molecular weight forms of fragment D, each containing a more degraded constituent γ chain, were identified. In the presence of 2 N-urea only slight plasmic degradation of fragment DCa2+ occurred. (3) Increased SDS-gel electrophoretic mobilities were demonstrated for the fragments D and Y prepared from fibrinogen in the presence of Ca2+. An anomalous electrophoretic mobility pattern was also described for the constituent γ chain of fragment DCa2+ and of fibrinogen exposed to Ca2+. It is suggested that Ca2+ bound to the constituent γ chain of fibrinogen and fragment D forms an intra chain Ca2+ -bridge towards the COOH-terminus thereby maintaining a 'hook-like' conformation. This form of fragment D, it is proposed, exhibits a decreased susceptibility to plasmic attack and an anomalously low electrophoretic mobility. (4) A method was developed employing ion-exchange chromatography and gel filtration for the preparation and isolation of fragment D both in the presence and absence of free Ca2+. (5) Studies employing purified samples of each type of fragment D confirmed that the two molecules differed in the extent of degradation of the constituent γ chain at the COOH-terminus. Furthermore an influence of Ca2+ on the charge heterogeneity of fragment D preparations was concluded from isoelectric focussing studies. (6) The proposal of a compact and thereby stable structure for the fragment DCa2+ molecule was strengthened by the results obtained from studies employing chemical crosslinking reagents and the technique of ultracentrifugation. (7) The possibility that serine, glycine and glutamate amino acid residues are located in the region of the γ chain associated with the binding of Ca2+ was suggested from amino acid analysis of fragment D.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Biology Theses
URI
http://hdl.handle.net/10023/14953

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter