St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

The proteins of the human erythrocyte plasma membrane with respect to in vivo ageing

Thumbnail
View/Open
MichaelKadlubowskiPhDThesis.pdf (20.16Mb)
Date
1976
Author
Kadlubowski, Michael
Supervisor
Lamb, J. F.
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
Fresh human red blood cells were fractionated according to their in vivo age by simple centrifugation in order that changes in the membrane proteins could be investigated. Accepted criteria were used to assess the fractionation obtained, A packed column of the youngest cells was found to contain much more extra-cellular space when compared to the oldest cells and the evidence pointed to this having arisen from a difference in surface charge repulsion rather than geometry, 25% of both the youngest and oldest cells appeared to be sphered. Analysis of the membrane proteins by SDS PAGE revealed an increase in proteins 2.5 and 4.1 and a decrease in protein 7 with age. A tentative classification of the proteins revealed by SDS PAGE was put forward based on their age-dependent behaviour and in situ loci, special attention being paid to membrane-cytoplasm interactions . In vitro ageing was found to produce quantitatively very different changes in the membrane proteins. The large increase in protein 4.l with age and the temperature dependence of its binding to the membrane made its isolation seem worthwhile. A protein which was almost certainly 4.1 was purified from the cytoplasm of outdated blood. A method was developed for the total solubilisation of the membrane proteins, permitting polyacrylamide gel electrophoresis whilst maintaining a very high degree of functional integrity. This was achieved using the four nonionic surfactants NP40, B35, T20 and T40. LDH, PNP, AChEase, NADH-MR and GAPD were visualised with this system and of these PNP, AChEase and NADH-MR exhibited an age-dependent decrease in band intensity. LDH was resolved into four discrete isozyme bands and PNP appeared to contain many unresolved bands. Nine membrane-associated enzymes were assayed by standard techniques. No change was found for Na, K-ATPase and GAPD but the specific activities of AChEase, PGK, PNP, AKase, Mg-ATPase, NADH-MR and alkaline phosphatase were all found to decrease with age by varying amounts. Reticulocyte contamination could only have accounted for the small AChEase decrease. Of the rest, all the decreases were considered to be genuinely age-dependent, although only the decreases in NADH-MR and alkaline phosphatase could unequivocally be said to have given a good indication of the in situ situation. The other decreases could easily have been caused by a decrease in membrane integrity with age leading to a greater' loss of enzyme protein from the older membranes during ghost preparation.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Biology Theses
URI
http://hdl.handle.net/10023/14911

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter