St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optical spanners and improved optical tweezers

Thumbnail
View/Open
NeilBSimpsonPhDThesis.pdf (32.02Mb)
Date
03/1998
Author
Simpson, Neil B.
Supervisor
Padgett, Miles
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
This thesis describes the experimental and theoretical work that investigated the transfer of orbital angular momentum from light to matter. This was achieved by combining two established areas of laser physics which were "optical tweezers" and Laguerre-Gaussian laser modes. The optical tweezers are essentially a tightly focussed laser beam from a high numerical aperture microscope objective lens, which traps particles in three dimensions just below the beam focus. By incorporating a Laguerre- Gaussian laser mode into the tweezers system, the trapping efficiency was doubled. These improved optical tweezers have been successfully demonstrated both theoretically and experimentally. In addition to the spin angular momentum which is associated with the polarisation state, the Laguerre-Gaussian laser modes also possess orbital angular momentum. The "optical spanners" utilised this property by transferring orbital angular momentum from the laser beam to the trapped particle, causing it to rotate whilst being held in the optical trap. This effect was theoretically modelled and experimentally observed. Using the optical spanners, the spin angular momentum of the laser was used to directly cancel the orbital angular momentum in the beam, which was observed as a cessation in rotation of the trapped particle. This demonstrated the mechanical equivalence of the spin and orbital components of angular momentum in a light beam, and gave experimental evidence for the well defined nature of the orbital angular momentum present in Laguerre-Gaussian laser modes.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Physics & Astronomy Theses
URI
http://hdl.handle.net/10023/14884

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter