St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Studies on phagocytosis in the shore crab 'Carcinus maenas' (Crustacea, Decapoda)

Thumbnail
View/Open
KarenLBellPhDThesis.pdf (34.11Mb)
Date
1994
Author
Bell, Karen Lennox
Supervisor
Smith, Valerie
Funder
Natural Environment Research Council (NERC)
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
Phagocytosis by hyaline cells of the shore crab, Carcinus maenas, was investigated in vitro. In particular, the project examined the role of the prophenoloxidase activating system (proPO) in opsonisation, the metabolic requirements of the cells during phagocytosis and the extent of intracellular bacterial killing. Related work investigated the mechanism and regulation of bacterial killing. Uptake was assessed using monolayers of separated hyaline cells challenged with the bacterium, Psychrobacter iminobilis. The bacteria were pretreated with haemocyte lysate supernatant (HLS) to enhance uptake. The opsonic factor(s) were found to be freeze stable and to be generated during serine protease activation of the proPO system. Phagocytosis was also found to depend upon electron transfer and oxidative phosphorylation and to require an intact cytoskeleton for engulfment. Following ingestion, ca 84% of the bacteria were found to be killed within 3h. Experiments designed to investigate the mechanism of killing showed that treatment of the hyaline cells with phorbol 12-myristate 13-acetate, lipopolysaccharide, phytohaemagglutinin or concanavalin A, but not laminarin, sdmulates the production of superoxide ions (O2-). The semi-granular and granular cells did not produce O2- following stimulation. Incubation of the cells with superoxide dismutase (SOD) confirmed that O2- was produced. Parallel experiments were conducted on a range of marine invertebrates. In all cases O2- production was observed, showing that O2- production is a general phenomenon for invertebrate phagocytes. However, quantification of hydrogen peroxide (H2O2) production, using a H2O2 assay, showed that crab phagocytes produced more H2O2 than tunicate phagocytes indicating that the kinetics of the response varies between species. Using immunocytochemistry, the antioxidant enzymes, catalase, glutathione peroxidase and SOD were found to be located within the haemocytes and plasma of C. maenas. These enzymes may minimise the risk of damage to the host tissues by the O2- and H2O2 produced by the hyaline cells.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Biology Theses
URI
http://hdl.handle.net/10023/14845

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter