St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Diode-pumped IμM neodymium lasers and their internal frequency doubling

Thumbnail
View/Open
CarlYellandPhDThesis.pdf (45.89Mb)
Date
06/1997
Author
Yelland, Carl
Supervisor
Sibbett, Wilson
Funder
Engineering and Physical Sciences Research Council (EPSRC)
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
In this thesis the design, construction and performance of several diode-laser pumped continuous-wave neodymium lasers are described. These lasers were operated both around 1 mum and, by internal frequency-doubling, at 0.5 mum. The main emphasis has been on the assessment of the various laser designs with regard to their potential for efficient, high-power visible operation. A variety of pumping geometries, resonator configurations, gain media and internal frequency-doubling schemes were investigated, and their relative merits explored. Both side-pumping and end-pumping arrangements were employed, with Nd:YAG, Nd:YLF and Nd:YVO4 being used as gain media. Travelling-wave and standing-wave resonator designs were used. The polarisation-rotation effect in non- planar ring resonators was investigated and used to obtain single-frequency output. Single-frequency 0.5 mum powers up to 1.2 W were generated, and the highest 0.5 mum output power achieved was 4 W on two-longitudinal modes spaced by 450 MHz. The highest 1 mum output power achieved was 10 W, with a slope efficiency of 43%. Maximum pump powers for the lasers were in the region 15 - 35 W. A review of diode-laser pumped devices is included, with particular emphasis on the role of the spatial distributions of the pump and signal fields, because this is an important limiting factor in the performance of diode-pumped bulk laser systems. The criteria governing the harmonic output power when internally frequency-doubling are discussed. Issues relating to noise in the harmonic output, and techniques for its avoidance, are also discussed.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Physics & Astronomy Theses
URI
http://hdl.handle.net/10023/14788

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter