St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

The stimulated Raman effect

Thumbnail
View/Open
DonaldPaulPhDThesis.pdf (27.36Mb)
Date
1972
Author
Paul, Donald M.
Supervisor
Maitland, Arthur
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
The present work describes a theoretical and experimental investigation of the stimulated Raman effect excited by the focused output of a slow, Q-switched ruby laser in the self-focusing liquids benzene, nitrobenzene, chlorobenzene, and carbon disulphide. Time relationships between the exciting pulse, the transmitted laser pulse, and the time resolved stimulated Raman spectra have been studied using a high speed streak camera in conjunction with fast photodiodes. The spontaneous Raman spectra of these liquids have been investigated using a photoelectric Raman spectrometer and a method is outlined for measuring the relative values of the stimulated Raman gain coefficients. It is experimentally shown that, on a nanosecond time scale, stimulated Raman lines are not generated simultaneously but in the sequence Stokes, Anti-Stokes, and second harmonic Stokes. Further, the time delay between the start of first and second harmonic Stokes is shown to be dependent on the rate of rise of the exciting pulse. It was found that during stimulated Raman generation the laser pulse transmitted through the liquid was heavily distorted and that each liquid produced its own characteristic pulse distortion. No distortion was found in the absence of stimulated Raman generation. Time correlations were found between the duration of features of the pulse distortion and the duration of first Stokes and second harmonic Stokes. These correlations show that forward stimulated Raman generation is controlled by the transmitted laser pulse not the exciting pulse. The threshold for the onset of pulse distortion is shown to be dependent on the rate of rise of the exciting pulse whilst, in all the liquids, apart from carbon disulphide, the 'cut-off' threshold is dependent on the peak power of the incident pulse. Investigation of the pulse distortion thresholds for the range of liquids produced relative values which did not agree with those predicted from either the optical Kerr coefficient or the calculated stimulated Raman gain coefficients. A theoretical model of the self-focusing of a focused beam in a medium for which both electrostriction and the optical Kerr effect are significant is presented and has been used to explain the anomalous threshold results. Within the experimental scatter of the results obtained, this model appears to explain the observed threshold effects. Since the forward stimulated Raman generation was weak in comparison to the transmitted laser pulse and followed this distorted pulse rather than the exciting pulse, it is concluded that stimulated Raman is not the dominant mechanism in the interaction. A brief review is presented of the theory and predictions of steady and non-steady state Brillouin scattering. Although the phonon lifetimes for the other liquids appear to be too short to be of significance, the results are similar in form to those of carbon disulphide. An explanation based on multiphoton absorption is suggested to explain the anomalous behaviour of these liquids. It is concluded that the observed effects in the forward stimulated Raman process depend upon the development in time of the non-linear field dependent self-focusing of the exciting beam and the strong backward scattering process.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Physics & Astronomy Theses
URI
http://hdl.handle.net/10023/14624

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter