St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dissipation in the superfluid helium film

Thumbnail
View/Open
ChristopherAdiePhDThesis.pdf (28.87Mb)
Date
1984
Author
Adie, Christopher J.
Supervisor
Armitage, Jonathan G. M.
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
Experimental apparatus to study dissipation in the saturated superfluid helium film has been developed. The low temperature parts comprise a sealed cell containing liquid helium, to which are affixed two parallel plate capacitors, functioning both as liquid reservoirs and as a way of measuring the liquid level. A small hole in a thin plastic film located in the flow path between the two capacitors forms the flow-limiting constriction. This arrangement introduces large velocity gradients in the vicinity of the hole. Film flow is initiated and sustained by an electric field in one capacitor, generated by a purpose-built Film Drive Unit (FDU) and a high-voltage amplifier. Detailed study of the helium film under steady flow conditions was not possible, but those results which were obtained indicate that the transfer rate is about 30% higher than was anticipated. By applying positive feedback to the film through the FDU, the inertial oscillations can be studied over many cycles. This new method has revealed some unexpected results, and a variety of types of oscillation behaviour have been observed. A theoretical model of dissipation has been developed, based on the premise that vortices in the film are oriented perpendicular to the film plane and are free to move and cross streamlines. According to this model, the large steady film transfer rates are due to the separation of the region of dissipation and the region of maximum velocity, an effect caused by the radial-flow geometry. Numerical simulation of the inertial oscillations using the model reproduces some of the behaviour observed experimentally, provided that the rate of vortex creation is taken to be a step function of the velocity. The shape of the liquid helium surface tension meniscus has been calculated numerically. The calculation is valid for the moving and static film in the absence of dissipation.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Physics & Astronomy Theses
URI
http://hdl.handle.net/10023/14602

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter