St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

The effect of local field corrections on the transport properties of solids

Thumbnail
View/Open
MesudeSaglamPhDThesis.pdf (25.90Mb)
Date
1977
Author
Saglam, Mesude
Supervisor
Friedman, Lionel Robert
Funder
Turkey. Ministry of Education
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
The purpose of this work is to investigate local field type corrections to electrical transport properties and in particular small polaron hopping conductivity. The question of local field corrections to transport properties has been considered for some time. Recently this question has become of particular interest for small polaron hopping conduction. Such corrections were considered as a possible explanation for the large jump parameters inferred in fitting the electric field dependence of the electrical conductivity of certain transition metal oxide glasses in which conduction is believed to occur via thermally activated small polaron hopping. Local field corrections are well established in determining the dielectric constant and optical properties at a single atomic site. Tessman et al have shown that the assumption of a normal Lorentz term gives excellent agreement between computed and measured polarizabilities in alkali halide crystals at optical frequencies. Adler has proved, using a self-consistent field theory that the standard Lorentz term arises in the tight binding limit. Also a full quantum mechanical treatment of the frequency and wave-number dependent dielectric constant including local field effect has been given by Wiser. It is shown that the dielectric constant splits into an atomic term that describes the motion of the electron around each atom and an acceleration term which describes the motion from atom to atom and that acceleration term contains no local field correction. Lidiard has discussed Lorentz type corrections to the diffusion coefficient in ionic conductivity. He argued that no Lorentz correction should be applied, since the Lorentz cavity must always be centred on the hopping carrier; thus, the Lorentz internal field can do no work as the carrier moves from one site to another. This view is strongly supported by the close agreement between ionic diffusion coefficients obtained from conductivity data and NMR relaxation and isotopic diffusion. It has been argued by Munn in several papers without detailed justification that the microscopic mobility does give the polaron velocity in terms of a local field. This argument is in conflict with that of Lidiard. However this question had not been considered explicitly for the case of electrical transport in the hopping limit. It is the intent of the present work to study the local field problem. In the first chapter we give a general description of the local electric field concept which is straight review. Chapters II and III are concerned with the question of local field corrections to the small polaron hopping conduction and the Hall mobility. In Chapter IV the results of Chapter II are applied to ac impurity hopping conduction. Finally in Chapter V we study the band motion of electrons using a theory of transport based on quantum mechanical principles.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Physics & Astronomy Theses
URI
http://hdl.handle.net/10023/14591

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter