St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Studies on the water vascular system of regular echinoids

Thumbnail
View/Open
AlanMichaelRaymondPhDThesis.pdf (20.12Mb)
AlanMichaelRaymondPhDThesis_HighResolution2.pdf (137.3Mb)
Date
1979
Author
Raymond, Alan Michael
Supervisor
Laverack, M. S.
Funder
Science Research Council (Great Britain)
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
The water vascular system is a highly modified mesocoel which is unique to the phylum Echinodermata. Hypotheses for the evolution of the water vascular system and its relationship to the mesocoel of other oligomerous animals are discussed. A scanning electron microscope survey of the skeletal structures associated with the water vascular system provides the first description of the ultrastructure of the madreporite, terminal tube foot plate, peristomial tube foot plate, tube foot (peri-stomial and ambulacral) disk elements. The relationship between the structure and function of skeletal elements is discussed, with particular emphasis on the madreporite and differences between the pores and disk elements of ambulacral and peristomial tube feet. The fine structure and innervation of the following intrathecal regions of the water vascular system were investigated: madreporite, axial organ, stone canal, circumoesophageal and radial water canals. It is postulated that the water vascular system has an important role in the transport, processing and removal of amoebocytes. The Polian vesicles and axial organ are major sites for amoebocyte collection and the axial organ processes amoebocytes prior to their removal via the madreporite. It is proposed that the madreporite is an excretory structure and necrotic amoebocytes and waste materials are evacuated by the ciliary activity of the endothelial cells lining the madreporite canal. On the basis of ultrastructure and fluorescence histochemistry, it is postulated that the aminergic axons of the basiepithelial plexus have a cilio-effector role and thus respiratory currents generated by ciliated epithelial cells are under neuronal control. The fine structure and innervation of the tube foot/ampulla complex was investigated. The three muscle groups of the complex consist of the disk levator muscle (D.L.M.), stem retractor muscles (S.R.M.) and ampulla muscles. It is proposed that the D.L.M. and ampulla muscles are structurally/functionally distinct from the S.R.M. with respect to endurance, speed of contraction and range. It is also proposed that the "changing acting partners" model for molluscan smooth muscle can also be applied to echinoderms' smooth muscle. The innervation of the tube foot/ampulla complex is rather unusual and it is proposed that a tube foot/ampulla ganglion occurs at the base of the tube foot within the perradial pore. Modified muscle processes termed muscle tails pass into the perradial pore and are innervated by motoneurons within the tube foot/ampulla ganglion. In addition, peripheral neurons termed L.D.S.G. cells innervated S.R.M., D.L.M., and connective tissue of tube feet and the inner muscle layer and connective tissue of the axial organ and Polian vesicles. The L.D.S.G. cells have been characterised histochemically and cytochemically and it is proposed that they elaborate a glycoprotein which has an important role in regulating cation fluxes within the connective tissue and musculature. The histochemistry and cytochemistry of tube foot connective tissue was investigated and the relationship between collagen filaments and glycoproteins and glycosaminoglycans are described.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Biology Theses
URI
http://hdl.handle.net/10023/14551

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter