St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Processing and antigenicity of tag-linked glycoproteins expressed in mammalian cells

Thumbnail
View/Open
MarkO'ReillyPhDThesis.pdf (16.08Mb)
Date
1997
Author
O'Reilly, Mark
Supervisor
Randall, R. E.
Funder
Medical Research Council (MRC)
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
The work presented within this thesis expands upon the theme within this laboratory, of utilising epitope-labelled recombinant proteins for the construction of multivalent subunit vaccines. Mammalian-cell expression- vectors were constructed which encoded a 14 amino acid epitope-tag, termed Pk-tag. The genes encoding the haemagglutinin (PIN) and fusion (F) glycoproteins (model type II and type I proteins respectively) from the paramyxovirus simian virus 5 (SV5), were inserted into the above vectors such that the sequence encoding the Pk-tag was present at the amino (N) or carboxy (C) terminus of SV5 HN, and the C-terminus of SV5 F. The genes were expressed in mammalian cells by utilising the vaccinia virus/T7 transient-expression system. Encouraging results were obtained which demonstrated that the addition of the Pk-tag to the N or C termini of SV5 HN, or to the C-terminus of SV5 F, did not prevent the production of; full length, N-linked glycosylated, oligomeric, natively folded and cell-surface localised Pk-tagged protein. An attempt was made to produce secretable forms of Pk-tagged SV5 HN and F. For this purpose, a vector was constructed which encoded a truncated version of the SV5 F protein in which the C-terminal transmembrane anchor & cytoplasmic tail were deleted, but which still possessed the sequence encoding the C-terminal Pk-tag at the C-terminus of the ectodomain. Expression of this gene in mammalian cells resulted in the production of a protein which had undergone N-linked glycosylation and partial oligomerisation. No secretion of the truncated Pk-tagged protein into the external milieu was detected. Furthermore, production of potentially secretable forms of N & C- terminally Pk-tagged SV5 HN was achieved by the construction of plasmid vectors in which the non-cleavable native HN signal sequence was replaced by a putative cleavable signal sequence from the Epstein Barr virus gp220/360 glycoprotein. Expression of the modified Pk-tagged HN genes in mammalian cells produced proteins of a lower mwt. than expected and which, apart from a small proportion of the N-terminally Pk-tagged molecules, did not possess N-linked oligosaccharides and were not recognised by conformationally sensitive mAbs. No secretion of the modified Pk-tagged HN into the external milieu was detected. Following the first initial characterisation of the Pk-tagged HN & F, in which very encouraging results were obtained, an attempt was made to isolate cell-lines which constitutively or inducibly expressed Pk-tagged HN. Production of Pk-tagged HN could not be detected from constructs in which expression was driven from constitutive promoters. However, production of N-terminally Pk-tagged HN (but not C-terminally tagged HN) was detected when expression was driven by the tTa inducible expression system. As a further development to the tTa system, a 293 cell-line was isolated which expressed high-levels of functional tTa. The tTa-producing cell-line was subsequently utilised in an attempt to isolate cell-lines which inducibly produce N-terminally Pk-tagged HN. These cells are currently undergoing selection for drug resistance. Further experiments were performed to try and develop a system whereby the low copy number of episomally-maintained EBV-based vectors present in a stable cell-line could be amplified to high copy number, whereby a subsequent increase in protein production would be envisaged. For this purpose, SV40 ori-containing, EBV-based vectors were constructed in which the expression of the non-toxic SV5 P protein was under the control of the hCMV IE promoter/enhancer. Cell-lines were isolated which produced the SV5 P in various amounts. Transient amplification of the episomal copy number was attempted via a transient expression of the SV40 LTAg, using plasmid DNA transfection. No subsequent increase in protein production was observed by way of a Western blot analysis.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Biology Theses
URI
http://hdl.handle.net/10023/14512

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter