St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sucrose metabolism in storage organs of 'Solanum tuberosum L.', 'Vicia Faba L.', and 'Beta vulgaris L.'

Thumbnail
View/Open
HeatherARossPhDThesis.pdf (15.97Mb)
Date
1994
Author
Ross, Heather A.
Supervisor
Davies, Howard V.
Wray, John L.
Funder
Scottish Office. Agriculture and Fisheries Department
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
The involvement of the sucrose-cleaving enzymes, acid and alkaline invertases and sucrose synthase in carbohydrate metabolism, was investigated in three different developing sink organs: 1) the starch-storing tubers from Solanum tuberosum L., 2) the starch- and protein-storing cotyledons from Vicia faba L., and 3) the sucrose-storing taproots from Beta vulgaris L. subsp. altissima. In potato, tuberisation is characterised by a change from an invertase- dominated sucrolytic pathway in stolons to one dominated by sucrose synthase in developing tubers. This pathway continues to be the major route for sucrose breakdown during tuber growth but only in tubers receiving a ready supply of photoassimilate. Sucrose flux to the tuber was shown to regulate sucrose synthase activity, excision of developing tubers from the mother plant resulting in a rapid decrease in sucrose synthase activity and an increase in acid invertase. Acid invertase was by far the major sucrolytic enzyme in stored tubers. In contrast, acid invertase does not play a major role in sucrose cleavage in developing bean cotyledons. Sucrose synthase is the dominant sucrolytic enzyme during the early stages of seed growth but in the later stages of development alkaline invertase predominates. During sugar beet development, high acid invertase activity in very young roots declines rapidly when taproot swelling commences, to be replaced by both sucrose synthase and alkaline invertase. Neither enzyme predominates during taproot growth. No significant increase in the activity of any of the sucrolytic enzymes occurred in taproots stored for 80 d at 8°C. Sucrose synthase was purified to homogeneity from bean cotyledons and characterised. Polydonal antibodies were raised to both native and denatured sucrose synthase protein. Similarly alkaline invertase was purified from bean cotyledons and sugar beet taproots and polyclonal antibodies raised to both denatured proteins. Isoforms of bean and sugar beet alkaline invertases were separated by anion-exchange chromatography but were not immunologically distinct. The antibodies produced were used throughout this study to confirm enzyme levels.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Biology Theses
URI
http://hdl.handle.net/10023/14475

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter