St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Biochemical and mutant analysis of nitrite reduction in barley

Thumbnail
View/Open
EuanDuncansonPhDThesis.pdf (35.92Mb)
Date
1991
Author
Duncanson, Euan
Supervisor
Wray, John L.
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
The object of this study was to isolate and characterise barley mutants that lacked a functional nitrite reductase activity. This work should complement previous studies on nitrate reductase to develop a fuller understanding of nitrate assimilation in barley. 30 nitrite reduction-deficient M2 barley plants (azide-treated in the M1) were identified as nitrite accumulators after treatment with nitrate. Biochemical analysis M2 selections revealed that leaf tissue from 9 selected plants lacked detectable nitrite reductase protein. Progeny from 4 of the selected plants (Golden Promise 2406, Tweed 3999, Klaxon 1010 and Klaxon 2760) inherited the phenotype of a lack of leaf nitrite reductase protein. These plants also lacked significant in vitro nitrite reductase activity. However, in vitro nitrate reductase and nitrate accumulation were comparable with wild type controls. Root tissue from nitrate-treated progeny of Golden Promise 2406, Tweed 3999, Klaxon 1010 and Klaxon 2760 also lacked nitrite reductase protein. Loss of nitrite reductase protein in selection Tweed 3999 was caused by a single recessive nuclear gene mutation. Thus, these plants are defective in nitrite reduction due to the inherited loss of nitrite reductase protein molecules in both leaf and root after treatment with nitrate in the light. This defect is caused by a mutation within a single nuclear gene in selection Tweed 3999. Analysis of wild type barley cv. Golden Promise revealed that increases in nitrite reductase activity in response to treatment with nitrate and light in leaf tissue and with nitrate in root tissue are due to de novo synthesis of enzyme molecules. In situ immunogold labelling of barley leaf sections with nitrite reductase antiserum demonstrates that the majority of labelling occurs within the chloroplasts.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Biology Theses
URI
http://hdl.handle.net/10023/14465

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter