Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.advisorCrawford, R. M. M.
dc.contributor.authorTyler, Peter David
dc.coverage.spatial114 p.en_US
dc.date.accessioned2018-06-21T14:52:52Z
dc.date.available2018-06-21T14:52:52Z
dc.date.issued1969
dc.identifier.urihttps://hdl.handle.net/10023/14417
dc.description.abstract1.The organic acid metabolism of the roots of wet-land species (helophytes) and that of dry-land species (non-helophytes) has been examined in relation to their tolerance to periods of experimental flooding. Growth differences between helophytes and non-helophytes were apparent only after an 18-day flood period, yet within four days of flooding differences could be observed in the levels of certain organic acids. Flooding in helophytes increased the level of root malic acid, and decreased that of succinic and lactic acid, whereas the reverse was found in non-helophytes. 2. There was evidence that under natural flooded conditions the root tissues of some wet-land species contain larger amounts of malic acid than when the flood water has receded and ground aeration improves. Shikimic acid has been detected in aquatic macrophytes and the fluctuating levels of shikimate in Iris pseudacorus and Nuphar lutea are discussed. 3. The organic acid changes related to flood tolerance operate only under partial anoxia, and under the strictly anaerobic conditions imposed by incubation of root tissue under nitrogen, there was a general reduction in all acid levels except lactate. It is suggested that non-helophytes cannot tolerate flooding through an inability to continue TCA cycle respiration during periods of reduced oxygen supply, and through the poisoning effects of ethanol accumulation. Helophyte species appear to be metabolically adapted to overcome periods of flood-induced anoxia, and tissue respiration continues with the provision for malic acid accumulation and no build-up of ethanol. 5. A tolerance of flooding, involving adaptations of the organic acid metabolism of the roots, has been demonstrated in helophyte species. This metabolic adaptation is rapidly induced, thus offering immediate protection upon flooding anoxia, and its importance in determining the ecological amplitude of a species and its possible role in future production of flood tolerant strains, are discussed.en_US
dc.language.isoenen_US
dc.publisherUniversity of St Andrews
dc.subject.lccQK871.T8en
dc.subject.lcshPlants—Absorption of wateren
dc.titleStudies on the organic acid metabolism of plants in relation to the flooding tolerance of their rootsen_US
dc.typeThesisen_US
dc.contributor.sponsorScience Research Council (Great Britain)en_US
dc.type.qualificationlevelDoctoralen_US
dc.type.qualificationnamePhD Doctor of Philosophyen_US
dc.publisher.institutionThe University of St Andrewsen_US


This item appears in the following Collection(s)

Show simple item record