Files in this item
Photonic crystal interfaces: a design-driven approach
Item metadata
dc.contributor.advisor | Krauss, Thomas F. | |
dc.contributor.author | Ayre, Melanie | |
dc.coverage.spatial | x, 184 leaves | en |
dc.date.accessioned | 2006-11-21T18:54:15Z | |
dc.date.available | 2006-11-21T18:54:15Z | |
dc.date.issued | 2006-06 | |
dc.identifier.uri | http://hdl.handle.net/10023/143 | |
dc.description.abstract | Photonic Crystal structures have been heralded as a disruptive technology for the miniaturization of opto-electronic devices, offering as they do the possibility of guiding and manipulating light in sub-micron scale waveguides. Applications of photonic crystal guiding - the ability to send light around sharp bends or compactly split signals into two or more channels have attracted a great deal of attention. Other effects of this waveguiding mechanism have become apparent, and attracted much interest - the novel dispersion surfaces of photonic crystal structures allow the possibility of “slow light” in a dielectric medium, which as well as the possibility of compact optical delay lines may allow enhanced light-matter interaction, and hence miniaturisation of active optical devices. I also consider a third, more traditional type of photonic crystal, in the form of a grating for surface coupling. In this thesis, I address many of the aspects of passive photonic crystals, from the underlying theory through applied device modelling, fabrication concerns and experimental results and analysis. Further, for the devices studied, I consider both the relative merits of the photonic crystal approach and of my work compared to that of others in the field. Thus, the complete spectrum of photonic crystal devices is covered. With regard to specific results, the highlights of the work contained in this thesis are as follows: Realisation of surface grating couplers in a novel material system demonstrating some of the highest reported fibre coupling efficiencies. Development of a short “injecting” taper for coupling into photonic crystal devices. Optimisation and experimental validation of photonic crystal routing elements (Y-splitter and bend). Exploration of interfaces and coupling for “slow light” photonic crystals. | en |
dc.format.extent | 5586866 bytes | |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | en |
dc.publisher | University of St Andrews | |
dc.rights | Creative Commons Attribution-NonCommercial-NoDerivs 2.5 Generic | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/ | |
dc.subject | Photonic crystal structures | en |
dc.subject | Light | en |
dc.subject.lcc | TK8304.A8 | |
dc.subject.lcsh | Crystal optics | |
dc.subject.lcsh | Photonics | |
dc.subject.lcsh | Optoelectronic devices | |
dc.subject.lcsh | Optical wave guides | |
dc.title | Photonic crystal interfaces: a design-driven approach | en |
dc.type | Thesis | en |
dc.type.qualificationlevel | Doctoral | en |
dc.type.qualificationname | PhD Doctor of Philosophy | en |
dc.publisher.institution | The University of St Andrews | en |
This item appears in the following Collection(s)
Except where otherwise noted within the work, this item's licence for re-use is described as Creative Commons Attribution-NonCommercial-NoDerivs 2.5 Generic
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.