Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.advisorKrauss, Thomas F.
dc.contributor.authorAyre, Melanie
dc.coverage.spatialx, 184 leavesen
dc.date.accessioned2006-11-21T18:54:15Z
dc.date.available2006-11-21T18:54:15Z
dc.date.issued2006-06
dc.identifier.urihttps://hdl.handle.net/10023/143
dc.description.abstractPhotonic Crystal structures have been heralded as a disruptive technology for the miniaturization of opto-electronic devices, offering as they do the possibility of guiding and manipulating light in sub-micron scale waveguides. Applications of photonic crystal guiding - the ability to send light around sharp bends or compactly split signals into two or more channels have attracted a great deal of attention. Other effects of this waveguiding mechanism have become apparent, and attracted much interest - the novel dispersion surfaces of photonic crystal structures allow the possibility of “slow light” in a dielectric medium, which as well as the possibility of compact optical delay lines may allow enhanced light-matter interaction, and hence miniaturisation of active optical devices. I also consider a third, more traditional type of photonic crystal, in the form of a grating for surface coupling. In this thesis, I address many of the aspects of passive photonic crystals, from the underlying theory through applied device modelling, fabrication concerns and experimental results and analysis. Further, for the devices studied, I consider both the relative merits of the photonic crystal approach and of my work compared to that of others in the field. Thus, the complete spectrum of photonic crystal devices is covered. With regard to specific results, the highlights of the work contained in this thesis are as follows: Realisation of surface grating couplers in a novel material system demonstrating some of the highest reported fibre coupling efficiencies. Development of a short “injecting” taper for coupling into photonic crystal devices. Optimisation and experimental validation of photonic crystal routing elements (Y-splitter and bend). Exploration of interfaces and coupling for “slow light” photonic crystals.en
dc.format.extent5586866 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherUniversity of St Andrews
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 2.5 Generic
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/
dc.subjectPhotonic crystal structuresen
dc.subjectLighten
dc.subject.lccTK8304.A8
dc.subject.lcshCrystal optics
dc.subject.lcshPhotonics
dc.subject.lcshOptoelectronic devices
dc.subject.lcshOptical wave guides
dc.titlePhotonic crystal interfaces: a design-driven approachen
dc.typeThesisen
dc.type.qualificationlevelDoctoralen
dc.type.qualificationnamePhD Doctor of Philosophyen
dc.publisher.institutionThe University of St Andrewsen


The following licence files are associated with this item:

  • Creative Commons

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution-NonCommercial-NoDerivs 2.5 Generic
Except where otherwise noted within the work, this item's licence for re-use is described as Creative Commons Attribution-NonCommercial-NoDerivs 2.5 Generic