St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mechanistic studies on glutamate mutase

Thumbnail
View/Open
BasilHartzoulakisPhDThesis.pdf (36.09Mb)
Date
1994
Author
Hartzoulakis, Basil
Supervisor
Gani, D. (David)
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
The coenzyme B12-dependent enzyme glutamate mutase (E.C. 5.4.99.1) catalyses the rearrangement of (2S)-glutamic acid to (2S,3S)-3-methylaspartic acid. Each of the two components of the enzyme was purified to homogeneity using a combination of low and high performance chromatographic techniques. Component E and S displayed molecular weights of 53 KDa and 13 KDa respectively as determined by gel electrophoresis, contrary to literature reports. A large number of glutamate and 3-methylaspartate analogues were synthesised and tested as substrates for the enzyme from Clostridium tetanomorphum. No rearrangement products could be detected for (2S,3R)-3-methylaspartic acid, (2S,3S)-3-ethylaspartic acid, 3-methylglutamic acid, (2S,3R)-3-methylsuccinic acid or A/-methyl-3-methylaspartic acid. Five inhibitors were discovered for the enzyme. Four of them were typical competitive inhibitors: (2S,3S)- and (2S,3R)-3-methylglutamates (Ki = 1.0 mM and Ki = 1.5 mM respectively); (2S)-homocysteic acid, Ki = 5 mM; and 1-bromo-cis-1,2-cyclopropanedicarboxylic acid (Ki= 2.2+/-0.2 mM). Finally 1-bromo-trans-1,2- cyclopropanedicarboxylic acid prevented the enzyme from processing (2S)- glutamic acid for periods of times proportional to its concentration. Our results support a radical mechanism with a protein bound glycyl radical as an intermediate, and provide evidence for the existence of two distinct conformations of the holoenzyme, prior to and after the activation of the cofactor. (2S,3R)-3- and (2S,3S)-3-Methylglutamic acids were synthesised stereospecifically by extending Schollkopf's bis-lactim ether methodology. The attack of various carbon anions at C-5 of isopropyl N-benzyl-(4S,5R)-1,2,3- oxathiazolidone-5-methyi-4-carboxyiate S,S-dioxide was not a versatile pathway. Nevertheless, the reaction of the oxathiazolidone with an allylmagnesium lithium cuprate complex gave some promising results, but more research is necessary to optimise certain problematic steps. Several different routes were evaluated for the preparation of 1-amino-1,2-cyciopropanedicarboxylic acid, but either low yields or instability of intermediates thwarted any attempts to achieve this goal. Finally 1- bromo-cis-and trans-1,2-cyclopropanedicarboxylic acids were synthesised by reacting methyl acrylate with methyl dibromoacetate in the presence of sodium hydride. The two pairs of enantiomers, cis- ((2S,3S) and (2R,3R)) and trans- ((2R,3S) and (2S,3R)) were separated by selective ester formation.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Biology Theses
URI
http://hdl.handle.net/10023/14380

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter