St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Some aspects of nonlinear laser plasma interactions

Thumbnail
View/Open
DavidAJohnsonPhDThesis.pdf (33.57Mb)
Date
07/1995
Author
Johnson, David A.
Supervisor
Cairns, Alan
Funder
SERC
Metadata
Show full item record
Abstract
Recent advances in the development of high power short pulse laser systems has opened a new regime of laser plasma interactions for study. The thesis is presented in two parts. In Part I, we consider the implications of these high power laser pulses for the interaction with a uniform underdense plasma, with particular regard to plasma-based accelerators. We present a scheme for the resonant excitation of large electrostatic Wakefields in these plasmas using a train of ultra-intense laser pulses. We also present an analysis of the resonant mechanism of this excitation based on consideration of phase space trajectories. In Part II, we consider the transition from linear Resonance Absorption to nonlinear absorption processes in a linear electron density profile as the intensity of the incident radiation increases and the scale length of the density profile decreases. We find that the electron motion excited by an electrostatic field exhibits some extremely complicated dynamics with bifurcations to period doubling and chaotic motion as the strength of the driving field is increased or the density scale length is decreased. We also present some results obtained from particle simulations of these interactions.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Physics & Astronomy Theses
URI
http://hdl.handle.net/10023/14318

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter