St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mechanistic studies on glutamate decarboxylase and serine hydroxmethyltransferase

Thumbnail
View/Open
JanetRosePhDThesis.pdf (39.40Mb)
Date
1993
Author
Rose, Janet Elizabeth
Supervisor
Gani, D. (David)
Funder
Biotechnology and Biological Sciences Research Council (BBSRC)
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
(2S)- and (2R)-Serine O-sulphate have been synthesised and shown to inactivate glutamate decarboxylase (GAD) from E. Coli. Novel methodology was developed to enable the stereospecific synthesis of (2S) and (2R)-deuteriated serine in order to probe the mechanism of inactivation. The rates of inactivation of glutamate decarboxylase by (2S)-, (2S)-[2-2H]-, (2R)- and (2R)-[2-2H]-serine O-sulphate have been measured for each of the isotopomers at a range of concentrations. From the data obtained the deuterium isotope effects were determined for each enantiomer. The inactivation by the (2S)-enantiomer was shown to involve C-H bond cleavage while inactivation by the (2R)-isomer involves C-decarboxylation. Both processes were shown to occur on the 4'-re-face of the coenzyme, the opposite face to that utilised in the physiological decarboxylation reaction. The methodology developed for the synthesis of the deuteriated serines involved the regiospecific introduction of deuterium to the C-6 centre of (3R)- and (3S)-2,5- dimethoxy-3-isopropyl-3,6-dihydropyrazine. Schollkopf chemistry was then exploited for the stereospecific alkylation at C-6 of the dihydropyrazines. This chemistry was versatile and enabled the synthesis of other deuteriated amino acids. For example (2S)-[2-2H]-phenylalanine, (2S)-[2-2H]-allylglycine and (2S)-[2-2H]-aspartic acid were synthesised using this chemistry. The decarboxylation of 2-aminomalonic acid by cytosolic serine hydroxymethyltransferase (SHMT) was studied. Contrary to previous reports, the reaction was found to be stereospecific and the newly introduced hydrogen was shown to occupy the 2-pro-S position of the glycine product.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Biology Theses
URI
http://hdl.handle.net/10023/14295

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter