St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Lipid oxidation in a model system and in meat

Thumbnail
View/Open
AndrewArnoldPhDThesis.pdf (25.39Mb)
Date
1989
Author
Arnold, Andrew Richard
Funder
Agriculture and Food Research Council (AFRC)
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
Lipid oxidation is the main factor which limits the shelf-life of meat when held under frozen storage. Research undertaken used pork phospholipid liposomes as a model for studying lipid oxidation in meat. Oxidation was followed by monitoring the decrease in the phospholipid unsaturated fatty acyl chains. It was found that the greater the level of unsaturation of the phospholipid fatty acyl chain the greater was their susceptibility to peroxidation. However, the results were not consistent and several reasons for the variation in rate are provided. At ambient temperatures copper (II) was found to be pro-oxidant in the peroxidation of liposomes. At temperatures below 0°C the prooxidant activity of copper (II) was significantly reduced. However copper again became highly pro-oxidant if sodium chloride was present. It is suggested that salt controls the copper ion concentration at sub-zero temperatures as the pro-oxidant activity of copper (II) is reduced on increasing the copper (II) concentration from 0.9 to 90 ppm. Other experiments found sodium nitrite and pholyphosphate to act as antioxidant and that liposome structure was an important factor in the rate of peroxidation. Four storage trials on pork burgers were undertaken to determine whether salt was also pro-oxidant in the stability of pork when held under frozen storage. The oxidative deterioration of the meat was followed by the following methods of analysis:- 1. The decrease in the unsaturated acyl chains of both total lipid and phospholipid. 2. The change in the colour parameters of the meat using reflectance spectroscopy. 3. The analysis of neutral lipid oxidation products by HPLC. 4. The organoleptic qualities of the pork using a trained panel of food assessors. The results from these storage trails showed that the deterioration of pork was minimised by storing the burgers at lower temperatures within the range 0 to -30°C. Salt was found to accelerate the oxidative deterioration of both uncooked and cooked pork when stored at -20°C. Nitrite was found to exhibit some antioxidant behaviour and reduce the pro-oxidant effect of salt.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Biology Theses
URI
http://hdl.handle.net/10023/14168

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter