St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optical parametric oscillators pumped by excimer lasers

Thumbnail
View/Open
MajidEbrahimzadehPhDThesis.pdf (38.10Mb)
Date
07/1990
Author
Ebrahimzadeh, M. (Majid)
Supervisor
Dunn, Malcolm H.
Metadata
Show full item record
Abstract
This thesis describes the development of a new generation of pulsed optical parametric oscillators (OPO's) based on two new non-linear materials, urea and beta-BaB2O4 (or BBO), and pumped by a new class of laser pump sources, namely, excimer lasers, to provide broadly tunable coherent radiation in new regions of the electromagnetic spectrum, particularly in the ultraviolet and the visible, which have previously been inaccessible. The laser pump source used during this work was a pulsed ultraviolet XeCl excimer laser operating at 308nm. Because of the stringent demands on the pump beam quality (with regard to both spatial and spectral coherence) for successful operation of OPO's, the pump laser was designed and constructed as an injection-seeded system, to provide a narrow-linewidth, near-diffraction-limited output beam, with sufficiently high peak powers to enable OPO operation. In this way, we were able to obtain an output beam with a linewidth ≤ 0.2cm-1, and a full-angle of divergence as low as 60muR (~3 times the diffraction limit). The maximum energy available from the pump laser was 30mJ, in pulses measuring typically 10ns in duration. The output beam was also linearly polarised to better than 95%, and the pulse repetition rate was 1 Hz. In the early part of this work, we used the constructed pump laser to investigate spontaneous parametric fluorescence in a home-grown urea sample, in order to characterise the crystal, and to compare the observed spectrum with the calculated OPO tuning curves. The results of these experiments were found to be in good agreement with the theoretical predictions. The main thrust of the project, however, was the development of an OPO based on urea as the non-linear medium and pumped at 308nm by the narrowband XeCl excimer laser. We were successful in constructing such an OPO, using an 8-mm-long, home-grown crystal, and were able to generate, continuously tunable output from 572 to 667nm, with a 2.5% energy conversion efficiency. The timing range of the device was later extended to 537-720nm, by utilising a 15-mm-long, home-grown urea sample, and its conversion efficiency was improved to as high as 37% at 90° phase-matching, with ≥ 10% efficiency over a 100-nm range in the visible (from 570 to 670nm). Finally, in an effort to achieve even higher efficiencies, we performed experiments in a 25-mm-long commercial urea crystal, and demonstrated exceptionally high external energy conversion efficiencies of up to 66%, with evidence of even higher levels of pump depletion (as high as 85%) at 90° phase-matching. The latter part of the project was concerned with the design and development of a similar device based on the new non-linear material, beta-BaB2O4, to provide continuously tunable radiation over a much broader tuning range, particularly in the blue and the near ultraviolet, not accessed by the urea OPO. We used a 12-mm-long commercially available beta-BaB2O4 crystal to construct this OPO, and successfully operated this device over the entire wavelength range from 354nm in the near ultraviolet, throughout the visible, to 2.37mum in the near infrared, with an energy conversion efficiency in excess of 10% over the range 450-960 nm. The constructed OPO's were also characterised with regard to several operating parameters, including oscillation threshold, spectral linewidth, as well as spatial and temporal variation and, where appropriate, the experimental results were compared with the predictions of theory.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Physics & Astronomy Theses
URI
http://hdl.handle.net/10023/14164

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter