Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.advisorRiches, Andrew Clive
dc.contributor.advisorBryant, Peter Edward
dc.contributor.authorHerceg, Zdenko
dc.coverage.spatialxxiii, 218 p.en_US
dc.date.accessioned2018-06-11T15:13:36Z
dc.date.available2018-06-11T15:13:36Z
dc.date.issued1996
dc.identifier.urihttps://hdl.handle.net/10023/13914
dc.description.abstractNeoplastic transformation of human thyroid epithelial cells has been investigated following exposure to ionizing radiation in vitro. The effects of radiation type, irradiation regime, and postirradiation passaging were examined using a human thyroid epithelial cell line, designated HToriS, which was previously immortalized with SV40 genome. Exponentially growing HToriS cells were irradiated with graded doses of 137 Cs gamma- and 238pu alpha-irradiation. Cells were irradiated with either a single or multiple doses of 0.5, 1, 2, 3, or 4 Gy gamma-radiation, or single doses of 0.125, 0.25, 0.5, 1, or 1.5 Gy gamma-radiation. Following passaging, the cells were transplanted into the athymic nude mice, and the animals were screened for tumour formation. Statistically significant increases in tumour incidence were obtained with both gamma- and alpha-irradiation and with both single and multiple irradiation regimes as compared with the un-irradiated group. Regardless of radiation type and or radiation regime there appears to be a trend, with increasing doses of radiation, in which tumour incidence increases and reaches a maximum, after which the tumour incidence decreases. Tumours were characterized by histopathological examination as undifferentiated carcinomas. Investigation of expression time following irradiation demonstrated that post-irradiation passaging, generally regarded as a critical step for expression of radiation-induced DNA damage, was not a prerequisite for the neoplastic conversion of irradiated cells with this system. Cell lines were established from the tumours and their identification and characterization carried out. All cell lines established were determined to be derived from the parent HTori3 cells by DNA fingerprinting, karyotype analysis, cytokeratin staining, and SV40 large T-antigen staining. Tumorigenicity of the cell lines was confirmed by retransplantation. Comparison of the morphology in vitro showed that the tumour cell lines retained the basic epithelial morphology of the parent HToriS cells. Investigation of radiosensitivity showed that none of the 6 tumour cell lines examined had a higher radiosensitivity compared to the parent HToriS cells. This excludes the possibility that the observed transformation was the result of the selection of a pre-existing transformed subpopulation of the parent cells but that radiation-induced transformants were being induced de novo. The tumour cell lines were screened for mutations in H- and K-ras oncogenes using restriction enzyme analysis of PCR amplified DNA. No mutations were detected in 26 tumour cell lines suggesting that mutations in these two genes do not appear to be involved in radiation- induced neoplastic transformation in human thyroid epithelial cells. Screening for mutations in p53 protein using immunoprecipitation method detected no mutations in 6 tumour cell lines. This human thyroid epithelial cell line may thus be useful for the in vitro study of cellular and molecular mechanisms that are involved in human epithelial cell carcinogenesis.en_US
dc.language.isoenen_US
dc.publisherUniversity of St Andrews
dc.subject.lccQH465.R3H4en
dc.subject.lcshRadiogeneticsen
dc.titleNeoplastic transformation of human thyroid epithelial cells by ionizing radiationen_US
dc.typeThesisen_US
dc.contributor.sponsorCommission of European Communities Radiation Protection Programmeen_US
dc.type.qualificationlevelDoctoralen_US
dc.type.qualificationnamePhD Doctor of Philosophyen_US
dc.publisher.institutionThe University of St Andrewsen_US


This item appears in the following Collection(s)

Show simple item record