St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparative studies of copper bromide lasers

Thumbnail
View/Open
LauraLittlePhDThesis.pdf (43.45Mb)
Date
06/1998
Author
Little, Laura
Supervisor
Little, Christopher E.
Metadata
Show full item record
Abstract
This thesis reports the first comprehensive comparison of the operating regimes of the three major types of Cu halide laser, which oscillate on the 510.6 nm and 578.2 nm resonance-metastable transitions of atomic Cu in pulsed discharges at 10-50 kHz pulse recurrence frequency. The three lasers had similar active volumes (36.8-43.5 cm3) and bores (12.5-13 mm), were excited using the same power supply and circuit and monitored using the same diagnostic apparatus. The CuBr-Ne laser produced an annular output beam, weighted towards the yellow transition, with a maximum average output power of 3.55 W and a maximum efficiency of 0.71 %. When H2 gas was added to this laser at a level of ~5%, the output beam developed an axial (central) peak in intensity, the beam was less constricted, the balance of green and yellow powers was improved, the output power rose to a maximum of 11.4 W and the maximum efficiency reached 1.47 %. In both of these lasers, the CuBr vapour was generated by heating a sidearm of the discharge tube. The vapour was entrained in a flow of Ne buffer gas to seed the active volume. A Cu hybrid laser, where CuBr is generated in the tube in situ by reaction of the discharge products of a Ne-HBr buffer gas with Cu pieces in the tube, has been compared to the two conventional CuBr lasers. The Cu hybrid laser also produced an output beam with a central maximum, little or no constriction and a good balance of green and yellow powers. Maximum average output power reached 12.8 W and the maximum efficiency was 1.66%. In terms of specific average output power, the hybrid laser was clearly superior to the other two, with values of 82 mW.cm-3 (CuBr), 262 mW.cm-3 (CuBr-H2) and 348 mW.cm-3 (Cu hybrid). The specific output power of the Cu hybrid laser obtained in these studies is a record value for any Cu laser (including elemental Cu lasers) of tube bore ~12.5 mm. This result and the general dependences of output power on buffer gas pressure, additive (H2, HBr) pressure, pulse recurrence frequency and charging voltage and capacitances are discussed in detail in terms of the fundamental processes and chemical reactions. The most important processes responsible for the high powers and efficiencies and the Gaussian-like beam profiles in the presence of hydrogen are dissociative attachment of HBr in the interpulse period and at the beginning of the pulse, and the reduction of CuxBrx polymers and monomers by H2 to free Cu atoms in the active volume. This is the first time that the importance of hydrogen reduction in these lasers has been identified. Without it, the filling in of the annular output beam cannot be explained. The mechanism of Cu seeding of the hybrid laser has also been studied in detail, as it is the most obvious difference between the Cu hybrid and conventional CuBr lasers. The basic reactions of the seeding process are described, and it is found that in addition to Cu3Br3 and Cu4Br4 polymers there must be a substantial amount of CuH in the discharge to account for the large density of Cu atoms in free form and locked up in molecular forms. This is the first time that CuH has been suggested as a major Cu-bearing species. The process of Cu dendrite formation in the tube is also discussed. Finally, the properties of the hybrid laser have been considered from the point of view of scaling to very high average output powers. It has been shown that average output powers of 1 kW are possible using current technology.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Physics & Astronomy Theses
URI
http://hdl.handle.net/10023/13895

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter