Show simple item record

Files in this item

FilesSizeFormatView

There are no files associated with this item.

Item metadata

dc.contributor.advisorSibbett, Wilson
dc.contributor.authorEvans, Jonathan Michael
dc.coverage.spatial157 p.en_US
dc.date.accessioned2018-06-07T11:22:07Z
dc.date.available2018-06-07T11:22:07Z
dc.date.issued1994-07
dc.identifier.urihttps://hdl.handle.net/10023/13809
dc.description.abstractThis thesis is concerned with the generation of ultrashort pulses from vibronic lasers. The two laser active materials used in the course of the work were Ti:sapphire and Cr:LiSAF. A self-modelocked Ti:sapphire laser has been described which generated pulses as short as 2ps, tunable over the wavelength range 730 - 850nm. The average output power was 400mW corresponding to a peak pulse power of 1kW. Using a prism sequence to implement intracavity dispersion-compensation resulted in the generation of near-transform limited pulses as short as 53fs with a peak pulse power of ~100kW. Two initiation techniques have been developed for the generally non-self-starting self- modelocking process, based upon intracavity insertion of either a regeneratively driven acousto-optic modulator or a solid-state saturable absorber. A cw Cr:LiSAF laser pumped by the 476.5nm line of the argon-ion laser output, was demonstrated; this generated a maximum output power of 300mW with a slope efficiency of 20% at 825nm. A dispersion-compensated self-modelocked Cr:LiSAF laser has been described that generated pulses as short as 45fs over the tuning range 770-910nm. The peak pulse power generated was 40kW. The phase noise of a modelocked Ti: sapphire laser has been reduced by referencing the cavity frequency to an ultrastable crystal oscillator. The phase noise of the frequency locked laser was 410fs (100-500Hz), 305fs (500Hz-5kHz) and 263fs (5-50kHz). By referencing two modelocked Ti:sapphire lasers to a common crystal oscillator two independently tunable pulse sequences with a relative timing jitter of ~1ps have been generated. A novel laser based upon a single Ti:sapphire gain element generating synchronised pulses at two different wavelengths has been demonstrated. Cross-correlation data recorded between the two output pulse sequences indicated a relative timing jitter of 26fs.en_US
dc.language.isoenen_US
dc.publisherUniversity of St Andrews
dc.subject.lccTK7871.3U6E8
dc.subject.lcshLasers
dc.titleUltrashort pulse generation and synchronisation in self-modelocked vibronic lasersen_US
dc.typeThesisen_US
dc.type.qualificationlevelDoctoralen_US
dc.type.qualificationnamePhD Doctor of Philosophyen_US
dc.publisher.institutionThe University of St Andrewsen_US


This item appears in the following Collection(s)

Show simple item record