St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optical and electrical pumping of colour-centre media

Thumbnail
View/Open
ColinIJohnstonPhDThesis.pdf (34.20Mb)
Date
07/1991
Author
Johnston, Colin I.
Supervisor
Sibbett, Wilson
Funder
Department of Education of Northern Ireland
Royal Armaments Research and Defence Establishment
Metadata
Show full item record
Abstract
Within this thesis the exploitation of the large homogeneously broadened bandwidth of the LiF:F+2 colour-centre laser by production of frequency tunable ultrashort optical pulses over the 0.8-1.0mum spectral region has been presented. A synchronously pumped LiF:F+2 colour-centre laser produced pulses of 700fs duration with average powers of 30mW when a colliding-pulse-modelocked travelling-wave cavity was implemented. Passive modelocking of the LiF:F+2 colour-centre laser was achieved over two spectral operating regions centred around 860nm and 930nm when the saturable absorber dyes IR140 and DaQTeC were employed. Pulse durations as short as 180fs and 130fs were obtained at 860nm and 930nm respectively using colliding-pulse-modelocked group-velocity-dispersion compensated resonators. The laser was pumped at a 10% duty cycle throughout. The use of coupled-cavity- modelocking techniques combined with passive modelocking was found to extend both the tuning range of the laser and useful operating lifetime of the saturable dye. A home built NaCl:OH- colour-centre laser which encorporates the stabilised F+2 colour- centre is presented. Output powers of up to 450mW were obtained for input pump powers of 4W and the laser tuned from 1.4-1.8?m. Electroluminescence studies of NaCl, CsI, CsI:Na, CsI:Tl, and KI crystals are also presented in a study to assess the feasibility of obtaining laser action from such materials by electrical excitation. KI is shown to be the favoured laser candidate by this excitation method and evidence of temporal narrowing and signal enhancement of the electroluminescence output is presented.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Physics & Astronomy Theses
URI
http://hdl.handle.net/10023/13756

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter