St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Electron beam lithography and induced deposition for nanoplasmonic applications

Thumbnail
View/Open
AlineHeyerickMPhilThesis.pdf (30.38Mb)
Date
27/06/2018
Author
Heyerick, Aline
Supervisor
Di Falco, Andrea
Funder
Engineering and Physical Sciences Research Council (EPSRC)
Keywords
Nanoplasmonics
Electron beam lithography
Electron beam induced deposition
Chirped diffraction gratings
Plasmonics
Nanophotonics
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Nanoplasmonics concerns the study of light-metal interactions on a subwavelength scale, exhibiting behaviour able to achieve arbitrary control and manipulation of light at the nanoscale, an important goal for the further development of nanophotonic devices. As the field of plasmonics advances, research is looking beyond the materials and fabrication techniques traditionally employed. This thesis discusses the design, fabrication methods, and characterisation of nanoplasmonic structures. A comparison between two electron beam based fabrication techniques, electron beam lithography (EBL) and electron beam induced deposition (EBID), is presented. The discussion covers both the fabrication technology and the properties of the resulting nanoscale structures: gold nanoscale features obtained via standard EBL, and tungsten structures achieved through EBID. As a mature technology, the well-understood characteristics and reliable fabrication procedures of electron beam lithography are weighed up against the limitations of top-down planar fabrication. Electron beam induced deposition is presented as an alternative technology, able to achieve nanoscale fabrication resolution with a point-and-shoot bottom-up deposition technique, but constrained by the lack of optimised fabrication settings as a result of incomplete understanding of a complex set of patterning parameters. Direct-write EBID technology offers to overcome several of the limitations and challenges of electron beam technology, including three-dimensional and greyscale patterning, and precise alignment and orientation of nanoscale features on arbitrary substrate patterns. This thesis also presents the discussion of chirped plasmonic diffraction gratings as a specific application in nanoplasmonics. Their theoretical design based on Fourier analysis and simulation-based design, their fabrication using both electron beam lithography and induced deposition, as well as the characterisation of their far-field diffraction pattern are discussed in detail. As part of the characterisation step, a Fourier microscopy setup for the measurement of the far-field diffraction patterns of nanophotonic structures in both reflection and transmission was constructed.
DOI
https://doi.org/10.17630/10023-12891
Type
Thesis, MPhil Master of Philosophy
Collections
  • Physics & Astronomy Theses
URI
http://hdl.handle.net/10023/12891

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter