Advanced multimodal methods in biomedicine : Raman spectroscopy and digital holographic microscopy
View/ Open
Date
07/12/2017Author
Supervisor
Keywords
Metadata
Show full item recordAltmetrics Handle Statistics
Abstract
Moving towards label-free technologies is essential for many clinical and research
applications. Raman spectroscopy is a powerful tool in the field of biomedicine
for label-free cell characterisation and disease diagnosis, owing to its high chemical specificity. However, Raman scattering is a relatively weak process and can require long acquisition times, thus hampering its integration to clinical technologies.
Multimodal analysis is currently pushing the boundaries in biomedicine, obtaining
more information than would be possible using a single mode and overcoming any
limitations specific to a single technique. Digital holographic microscopy (DHM) is a
rapid and label-free quantitative phase imaging modality, providing complementary
information to Raman spectroscopy, and is thus an ideal candidate for combination
in a multimodal system.
Firstly, this thesis explores the use of wavelength modulated Raman spectroscopy (WMRS), for the classification of immune cell subsets. Following this a
multimodal approach, combining Raman spectroscopy and DHM, is demonstrated,
where each technique is considered individually and in combination. The complementary modalities provide a wealth of information (both chemical and morphological) for cell characterisation, which is a step towards achieving a label-free technology for the identification of human immune cells. The suitability of WMRS to
discriminate between closely related neuronal cell types is also explored.
Furthermore optical spectroscopic techniques are useful for the analysis of food
and beverages. The use of Raman and fluorescence spectroscopy to successfully discriminate between various whisky and extra-virgin olive oil brands is demonstrated,
which may aid the detection of counterfeit or adulterated samples. The use of a compact Raman device is utilised, demonstrating the potential for in-field analysis.
Finally, monodisperse and highly spherical nanoparticles are synthesised. A
short study demonstrates the potential for these nanoparticles to benefit the techniques of surface enhanced Raman spectroscopy and optical trapping, by way of
minimising variability.
Type
Thesis, PhD Doctor of Philosophy
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
Collections
Description of related resources
M. Chen*, N. McReynolds*, E. C. Campbell*, M. Mazilu, J. Barbosa, K. Dholakia, S. J. Powis, "The use of wavelength modulated Raman spectroscopy in label-free identification of T lymphocyte subsets, natural killer cells and dendritic cells", (2015) PLosOne 10(5): e0125158. (* Authors have equal contribution) (http://hdl.handle.net/10023/6705)N. McReynolds, J. M. A. Garcia, Z. Guengerich, T. K. Smith, K. Dholakia, "Optical Spectroscopic analysis for the discrimination of Extra-Virgin Olive Oil", (2016) Appl. Spectrosc., 70(11) 1872-1882 (http://hdl.handle.net/10023/9860)
N. McReynolds, F. G. M. Cooke, M. Chen, S. J. Powis, K. Dholakia, "Multimodal discrimination of immune cells using a combination of Raman spectroscopy and digital holographic microscopy", (2017) Sci. Rep., 7 (43631) (http://hdl.handle.net/10023/10402)
Except where otherwise noted within the work, this item's licence for re-use is described as Attribution-NonCommercial-NoDerivatives 4.0 International
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.