St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Investigating the trypanocidal activity of simplified natural product-like analogs and the characterization of a novel trypanosomatid-specific secondary alternative oxidase

Thumbnail
View/Open
Stefanie-Menzies-PhD-thesis.pdf (80.28Mb)
Date
07/12/2017
Author
Menzies, Stefanie Kate
Supervisor
Smith, Terry K.
Florence, Gordon John
Funder
Leverhulme Trust
Keywords
Trypanosome
Drug discovery
Target identification
Mitochondria
Alternative oxidase
Leishmania
Metadata
Show full item record
Abstract
This thesis aimed to identify the trypanocidal mode of action of non-natural chamuvarinin analogs, and to assess the previously uncharacterized secondary alternative oxidase (AOX2) as a possible drug target of the trypanosomatids. The drugs used to treat infections with Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. are highly toxic and are increasingly becoming less effective as the parasites develop resistance, therefore new drugs against the diseases are desperately needed. Non-natural analogs of chamuvarinin were tested for trypanocidal activity to determine the structure activity relationships of the compounds against insect-form T. cruzi and Leishmania spp. This identified several potent and selective analogs, which retained good activity against the medically relevant intracellular forms of the parasites. Photoaffinity labeling was utilized to identify the mode of action and protein target(s) of the chamuvarinin analogs. The analogs were shown to deplete ATP levels and to induce mitochondrial dysmorphia and mitochondrial oxidative stress. Photoaffinity labeling confirmed the mitochondrial localization of the protein target(s) of these compounds, however the exact protein target(s) were unable to be identified by protein pull-down and mass spectrometry. The previously uncharacterized secondary alternative oxidases (AOX2) are conserved throughout the human-infective trypanosomatids and are absent from mammalian cells, thus making an attractive drug target if the protein is essential. The AOX2 of T. brucei, T. cruzi and L. major were expressed in Escherichia coli to characterize the enzymatic activity of the proteins. T. brucei AOX2 was successfully purified and shown to be an ubiquinol oxidase, which contains bound iron (III). The role of AOX2 within the trypanosomatids was determined by biochemical phenotyping and genetic manipulation of T. brucei, T. cruzi and L. major, which indicated that AOX2 is an essential mitochondrial oxidase in the three trypanosomatids, with a putative role in energy production, and therefore is an attractive multi-trypanosomatid drug target.
DOI
https://doi.org/10.17630/10023-12041
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Biology Theses
URI
http://hdl.handle.net/10023/12041

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter