St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Transferred electron oscillators at MM wave frequencies and their characterisation using quasi-optical techniques

Thumbnail
View/Open
GrahamSmithPhDThesis.pdf (16.90Mb)
Date
1990
Author
Smith, Graham Murray
Supervisor
Lesurf, J. C. G.
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
A study of high frequency millimetre wave oscillators is performed operating at W- band and above, using test bench equipment designed and constructed in St. Andrews. Octave tuneable oscillators have been designed, constructed, and used to characterise developmental Gunn devices, as well as to provide ideal oscillators for test bench measurement systems. These oscillators have been sold to many millimetre-wave laboratories throughout Britain. The operation, optimisation and characterisation of these oscillators is described in detail, and various non-linear effects are explained and modelled successfully. The wideband tuneability and matching has also allowed evaluation of new developmental Gunn devices to accurately determine the optimum operating frequency range of the devices. This was part of a developmental program by GEC Hirst and MEDL which has now produced state of the art GaAs Gunn oscillators at 94GHz. Much of the characterisation of the oscillators is performed using novel quasi-optical techniques, which has allowed low loss accurate performance at these very high frequencies. Several quasi-optical techniques are described and the design, manufacture and evaluation of many optical components are given. In particular, the frequency and harmonic content of the oscillators was determined using a Martin-Puplett Interferometer which utilised a frequency counting technique. This enabled easy wideband measurements to be performed with much greater accuracy than traditional cavity wavemeters. In addition, a state of the art noise bench has been designed and constructed for operation at W -band and above, that utilises a novel open resonator to effect a very high Q suppression filter. The system has been shown to make noise measurements at much lower power levels and with greater sensitivity than comparable systems.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Physics & Astronomy Theses
URI
http://hdl.handle.net/10023/11106

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter