St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quasi-Newton methods for unconstrained function minimization and the solution of systems of nonlinear equations

Thumbnail
View/Open
CaesarViazminskyMScThesis1974_original_C.pdf (12.69Mb)
Date
1974
Author
Viazminsky, Caesar P.
Metadata
Show full item record
Abstract
This thesis is concerned with the unconstrained minimization of a function of n variables, and, to a lesser extent, with the numerical solution of systems of nonlinear equations. The first chapter contains an account of the fundamental ideas and theorems which are related to the subject of this thesis, and also gives a brief description of some methods which historically precede quasi-Newton methods, such as the method of steepest descent, Newton's method, the conjugate direction methods, the contraction mapping method, and the parameter variation method. Newton's method, among the aforementioned methods, is considered the most effective one. It is rapidly convergent, and is capable of handling a variety of problems efficiently. But from a computational point of view, Newton's method is expensive. The second chapter of this thesis demonstrates how quasi-Newton methods are considered as an improvement of Newton's method by being able to circumvent the difficulties which face Newton's method. Also a general procedure for deriving quasi-Newton algorithms is described. All methods generate a sequence of estimates which tend to the solution of the problem. In general all the methods which precede quasi-Newton methods employ information at the present stage, but quasi-Newton methods employ information at the present stage, and at the stage immediately previous to the present. In chapters 3 and 4 we will discuss methods which employ information from previous stages. Such methods are unified in one general scheme called "supermemory descent methods". Numerical experience with members of this class of methods is reported and compared with quasi-Newton methods.
Type
Thesis, MSc Master of Science
Collections
  • Mathematics & Statistics Theses
URI
http://hdl.handle.net/10023/21940

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter