St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automated theorem proving for mathematics : real analysis in PVS

Thumbnail
View/Open
HanneGottliebsenPhDThesis.pdf (27.81Mb)
Date
2002
Author
Gottliebsen, Hanne
Supervisor
Martin, Ursula
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
Computer Algebra Systems (CASs), such as Maple and Mathematica, are now widely used in both industry and education. In many areas of mathematics they perform well. However, many well-established methods in mathematics, such as definite integration via the fundamental theorem of calculus, rely on analytic side conditions which CASs in general do not support. This thesis presents our work with automatic, formal mathematics using the theorem prover PVS. Based on an existing real analysis library for PVS, we have implemented transcendental functions such as exp, cos, sin, tan and their inverses, and we have provided strategies to prove that a function is continuous at a given point. In general, this is undecidable, but using certain restrictions we can still provide proofs for a large collection of functions. Similarly, we can prove that a function has a limit at a point. We illustrate how the extended library may be used with Maple to provide correct results where Maple's are incorrect. We present a case study of definite integration in the CASs axiom. Maple, Mathematica and Matlab. The case study clearly shows that apart from axiom the systems do not fully check the necessary conditions for the definite integral to exist, thus giving results varying from plain incorrect to correct, even if the latter is difficult to detect without manipulating the result. The extension and correction of the PVS library consists of around 1000 theorems proven by around 18000 PVS proof commands. We also have a test suite of 88 lemmas for the automatic checks for continuity and existence of limits. Thus we have devised and tested automatic computational logic support for the use of formal mathematics in applications, particularly computer algebra.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Mathematics & Statistics Theses
URI
http://hdl.handle.net/10023/15046

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter