St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Time-dependent MHD wave coupling in non-uniform media

Thumbnail
View/Open
IanMannPhDThesis.pdf (34.90Mb)
Date
1996
Author
Mann, Ian R.
Supervisor
Wright, Andrew
Funder
Particle Physics and Astronomy Research Council (PPARC)
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
This thesis studies the time dependent evolution of MHD waves in cold, fully compressible non-uniform plasmas. We used a 1-D box model (e.g., Southwood (1974)) to study wave mode coupling, and concentrate upon developing an understanding of the underlying physics that governs waves in the Earth's magnetosphere. We begin by discussing the form of the (often singular) governing eigenmodes of the system, and subsequently use these eigenmodes as a basis with which to construct the solution to a variety of initial value problems. We consider a detailed analysis of both the widths and the internal length scales developed by cavity mode driven held line resonances (FLRs), and compare our results to observations presented in the literature. We find that (especially asymptotically in time) the coupled waves derive their dominant characteristics from the form of undriven decoupled toroidal Alfvén eigenmodes. Ideal numerical solutions show that fine spatial scales are developed across the background magnetic field, and we demonstrate that this is accurately estimated as the decoupled phase mixing length L[sub]p[sub]h = 2π/𝜔ⁱ[sub]A = d 𝜔[sub]A/dx We also discuss the likely ionospheric and kinetic modifications to our theory. Later, we consider the evolution of poloidal Alfvén waves having large azimuthal wavenumber (𝜆). We find that the 𝜆 → ∞ decoupled poloidal Alfvén wave evaluation (Dungey, 1967) is modified for finite 𝜆 lambda, approaching decoupled toroidal field line oscillations for large t. We define a poloidal lifetime 𝛵, when toroidal and poloidal displacements become equal, and demonstrate that this is when the phase mixing length is equal to 2pi/lambda. We examine numerically the poloidal Alfvén wave evolution for 𝜆 ≫ k[sub]z, and k[sub]≳ lambda, when k[sub]x(x,t = 0) ≪ lambda or k[sub]z. We interpret the lambda ≪ kz results (applicable to the Earth's magnetosphere) in the context of poloidal Alfvén wave observations, and compare our study to the numerical analysis of Ding et al. (1995). We conclude the thesis by undertaking an asymptotic derivation of the large 𝜆 solutions by using the method of multiple time scales. We find our analytic solutions are in excellent agreement with those determined numerically. A central result of the thesis is the importance and dominance of the phase mixing length for time dependent solutions, irrespective of the value of 𝜆.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Mathematics & Statistics Theses
URI
http://hdl.handle.net/10023/14264

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter